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ABSTRACT
The growth in malware remains a major challenge to Internet
security. In this paper, we present Valkyrie, a classification
system that is able to identify malicious binaries purely based
on behavioral traits gathered from large-scale telemetry sub-
mitted by endhosts using a lightweight sensor component.
Valkyrie utilizes the Apache Spark data processing frame-
work and is therefore able to process a large volume of
real-world data in a short amount of time. In addition, since
Valkyrie conducts all its heavy computation in the cloud,
it therefore imposes minimal load on endpoints. Valkyrie
achieves high confidence predictions at a very low false posi-
tive rate, making it a suitable solution for use with production
systems.

1. INTRODUCTION

The growth in new malware continues to be a major challenge
to the security of computing systems. At current rates, seeing
potential malware files in the order of hundreds of thousands
of instances per day is the norm. Analyzing this volume of
files on a backend system with various system configurations
is a costly and resource intensive endeavor. On the other hand,
analyzing files in sufficient depth on endhosts tends to starve
the user of said endhost of compute capacity and can only
consider locally available trait information.

In this research we present a novel malware detection
system, which we call Valkyrie, that utilizes system event
data collected from a large number of endhosts and sent to
the cloud. The data collected allows the construction of a be-
havioral profile for Windows Portable Executable files, which
subsequently can be classified using supervised machine
learning techniques.

We use Valkyrie in conjunction with numerous other clas-
sification techniques, which is reflected in its design goals.
First, we do not attempt to construct a panacea model that
detects all malware. Instead, the focus is to add incremental
detections for malware otherwise missed. Second, Valkyrie
must be able to detect malicious activity without having ac-
cess to the malware binary. This allows tapping into large
scale telemetry that can be cheaply collected from many end-
hosts. Third, Valkyrie must perform well on the types of

telemetry we currently collect, which are subject to conflict-
ing considerations such as computational overhead or band-
width consumption.

In order to process the large volumes of incoming cloud
data from the sensors, we utilize the Apache Spark Big Data
processing framework [1]. Spark allows for large-scale batch
processing for our feature extraction purposes over the raw
event data generated by endhosts. This allows Valkyrie to be
very scalable to extremely large data sets, which in turn en-
ables it to be much more comprehensive in its coverage of ex-
ecutions across endhosts deployed on all protected networks.

2. RELATED WORK

Existing work on malware classification can be broadly cate-
gorized as either static analysis, in which features of the file
itself are used, or behavioral analysis, in which samples are
run and their behavior is analyzed, either in a sandbox sys-
tem [2] or on end hosts.

A great deal of work has been done on static analysis of
malware samples. Some work tries to disassemble the sam-
ple to determine its behavior [3, 4] while other work depends
mainly on the structure and contents of the raw file [5, 6].

Behavioral analysis of malware samples has also received
a great deal of interest. Some work involves taint tracking [7]
while other work uses data sources such as system call se-
quences and system call arguments [8, 9].

Less work has been done on dynamic analysis of malware
samples running on end hosts. Most researchers do not have
access to large volumes of real world data from many active
end hosts, so their sample sizes are generally smaller than the
data volumes we leverage for Valkyrie. Collecting the fea-
tures of the program executions also poses a problem because
the collection should not use too much of the system’s re-
sources [10]. Even using network data alone can yield good
performance when the size of the data is large [11].

3. METHODOLOGY

Currently, Valkyrie focuses on malicious Microsoft Windows
Portable Executable files. We leverage event data sent to
the cloud by the Falcon Host sensor. The sensor is a small
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kernel-level driver that instruments a number of system event
sources. While Falcon Host is a commercial product, the
subset of data that Valkyrie utilizes can be instrumented with
moderate effort.

3.1. Raw Data

Raw event data generally contains a timestamp and an identi-
fier for the associated process (PID), which is unique for every
process in the data set, i.e. also across multiple machines.

The raw data used is a subset of data submitted by sen-
sors. For the classifier presented in this research, we focused
on information that can be collected cheaply and is already
readily available in our data set. The majority of the event
data utilized falls into the following categories.

• Process data. On process creation, an event is dis-
patched containing information on the hash of the
primary module, file name information, privilege level,
and the parent process PID. Another event is dispatched
on process termination.

• Network data. Source/destination IPs and ports plus
information on the network layer protocol are sent.

• DNS data. Information on A or AAAA records that are
looked up is sent.

• Files written. File name and type information are sent
for a number of types of interest including Portable Ex-
ecutable (PE) files, scripts, PDF files, archives, etc.

For some events, the sensor automatically applies data
reduction heuristics to its cloud transmissions. For exam-
ple, information on registry changes are relayed when relat-
ing to persistence (i.e. for auto-start extensibility points) in
a network-enabled context. Other preconditions are possible
but not applicable to Valkyrie.

3.2. Field Data

The raw event data outlined above is collected from a large
number of sensors. The subset of events used for feature ex-
traction amounts to about 3 billion per day. Valkyrie evalu-
ates only events for the first 100 seconds of execution time of
a process. This allows us to reduce the data size and enables
us to reach a verdict fairly quickly if required. Various mod-
els can easily be trained using varying timeframes achieving
similar results, which is out-of-scope of the work presented in
this paper.

3.3. Sandbox Data

Since the field data is collected from production systems, we
see a vastly larger amount of clean files than dirty files. To get
to a more balanced data set suitable to train a classifier, we
bolster the number of dirty files by installing the sensor in a
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sandbox and executing files retrieved from a feed of suspected
malware in it.

The prior probability for a file to be malware is signifi-
cantly higher if the file was executed in the sandbox. There-
fore, extra care must be taken such that the classifier does
not pick up on sandbox-specific artifacts in the event data. In
other words, we must assure that the classifier is trained on
maliciousness and not on detecting whether a file ran in the
sandbox. There are a number of potential artifacts that must
be avoided, which include the following.

• Execution time. The sandbox runs a sample for a
shorter amount of time than a production system. Since
Valkyrie only evaluates 100 seconds of data, this does
not impact the classifier.

• Parent process. In sandbox executions, the executed
sample is always started by the same parent. Therefore,
information on the parent cannot be used for classifica-
tion purposes.

• Location of file. The sandbox always executes samples
from the same directory. Hence, such path-based fea-
tures cannot be used.

• Exit code. The exit code of a program once it ter-
minates cannot be used since many sandbox execu-
tions are silently terminated when the sandbox VM is
stopped.

The resulting data flow is shown in Figure 1. Field data
mainly contributes to the clean file corpus. Sandbox data as-
sures sufficient dirty data is available as well. The unlabeled
data that we use for prediction is derived from field data.

3.4. Features

Based on the raw events outlined in Section 3.1, features are
computed in three steps: (1) direct process features, (2) chil-
dren features, and (3) per-hash features.



As the first step, all data we have pertaining to a single
process is aggregated. In some cases, this corresponds to a
one-to-one mapping of events to features. For example, our
raw data contains one event type indicating that a process
deleted its own executable file on disk. In other cases, there
are one-to-many mappings between processes and events. For
these cases, we use an aggregation function over all instances
of an event per process. For example, the mean length of do-
main names looked up via DNS is computed by aggregating
all DNS events per process. Other aggregation functions are
used for other raw data. Valkyrie uses mean, variance, max-
imum, minimum, count unique, and sum, which are config-
ured depending on the raw data being aggregated.

During the next step, all direct children and their chil-
dren (the second-order children or grandchildren) of a pro-
cess are aggregated into two sets: one set with only children
and one set with children and second-order children. For each
of these sets, a select number of features computed in the first
step are aggregated again (using a selection of the aggregation
functions mentioned previously). For example, for the mean
length of domain names, we compute both the mean and the
variance across the set of children and the set of children and
second-order children. This example yields four features that
we associate with the parent process.

As the last step, all per-process data is aggregated by the
hash of the binary file corresponding to the process. This
yields a behavioral feature vector for the hash that is based on
one or more executions of the process and also accounts for
the behaviors observed for child processes spawned by those
processes.

This flow of raw event data into aggregated features is
depicted in Figure 2. One-to-one mappings are copied into
process and children records (a). One-to-many mappings are
aggregated and then copied as a single feature (b). A selection
of children features is aggregated using multiple techniques
resulting in additional process features (c). Depending on
the type of raw data, this step may be conducted twice, once
for direct children and another time for direct children and
second-order children combined. Finally, all process records
for processes sharing the same hash are aggregated into a hash
record (d). Again, multiple aggregation techniques are used
resulting in multiple target features. An advantage of this ag-
gregation model is that it can be easily scaled to large data
sizes using Big Data technology (see Section 4).

The resulting features tend to have noisy distributions
with many large outliers. We were able to improve classifica-
tion performance compared to regular standardization using
the following scaling heuristic. First, we apply a double-sided
logarithm:

f(x) = sgn(x)log(1 + |x|)

The intent is to attenuate high-valued outliers, which occur
frequently. The resulting values are then subjected to stan-
dardization for µ = 0 and σ = 1. Lastly, we apply the sig-
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Fig. 2. Aggregation of raw event data

moid function, which maps all data points into (0; 1):

g(x) =
1

1 + e−x

On top of these dense features, we also extract sparse fea-
tures. For example, we use the suffix of files written as a
range of sparse features with one feature allocated per suf-
fix. Sparse features are either binary (i.e. either zero or one),
in which case we do not normalize them further, or they are
counts, in which case we normalize them by the number of
processes seen for the hash for which we compute the behav-
ioral features.

As with dense features, we also compute sparse features
over children and second-order children. For sparse features,
we determined that adding both sparse features for children
and for children plus second-order children does not introduce
more useful information (and in fact the increased dimen-
sionality becomes detrimental to classification performance).
Therefore, sparse features for children are always for the di-
rect and second order children combined. Furthermore, we
add the sparse features for the parent as well. For example,
the sparse children features for file suffixes written contain
features for all the suffixes for the parent, its direct children,
and its second-order children.

The final data set contains 868 dense features and over
286 million sparse features. More details on the most infor-
mative features are covered in Section 5.2.

3.5. Ground Truth

A sufficient amount of properly labeled training data is a
crucial prerequisite for supervised machine learning. For
Valkyrie, we leverage numerous sources for labels. First, we
use manually curated lists of labels for both clean and dirty
files as well as files that we want to exclude from training
such as adware. Second, we utilize an extensive whitelist
based on software downloaded from reputable sources for
clean labels. Third, we leverage data from VirusTotal [12]
in various ways: files that are detected by more than x AV



engines are labeled as dirty, files that are flagged as goodware
are labeled as clean, and files that are signed using a trusted
certificate are also labeled as clean.

For the latter condition, we validate that the certificate
chain for the file is valid and that the leaf certificate of the
chain is trusted. That trust is determined by using a manually
curated whitelist of known-good certificates. This is neces-
sary since many adware executables and other potentially un-
wanted programs (PUPs) are properly signed, but we do not
want to use either as part of our clean training data.

4. IMPLEMENTATION

We implemented the feature extraction code in Python 2.7,
as it gave us much flexibility and access to helpful libraries
for different sections of the feature space. We ran the code
using PySpark, the Python extension for Apache Spark, on a
Spark cluster configured to handle the high volumes of data
we needed to process for feature extraction.

For training, we conducted feature extraction over hourly
chunks of data. In our deployment, this allows for an efficient
use of resources for bulk processing. For prediction, feature
extraction can be conducted over differently sized batches or
it can utilize Spark’s stream processing features. In the train-
ing data set, we sampled the instances per hash in the field
data. This is conducted in order to keep parity with the sand-
box data. Since in the sandbox a hash may only be run once or
a small number of times, we aimed to ensure that we did not
heavily weight hashes that may appear in many of our one-
hour processing windows. The final data set used for training
contained 127,092 clean instances and 78,791 dirty instances.

For the classifier implementation, we used the Python
wrapper for LibSVM [13], and for the Random Forest imple-
mentation we used scikit-learn [14]. For both classifiers, we
performed 7-fold cross-validation during training to evaluate
performance. For SVM, we implemented a distributed grid
search algorithm based on the Python wrapper for LibSVM.
The implementation leverages Apache Spark, which allows
us to utilize the existing cluster resources and interact with
our data in the Hadoop Distributed Filesystem. For Random
Forest, the number of trees and relative weighting of the
classes was found using random search [15].

5. RESULTS

5.1. Classification Performance

We trained three types of model on the extracted feature data:

• An SVM model over all features, both dense and
sparse.

• An SVM model over only the 868 dense features.

• A Random Forest model over only the 868 dense fea-
tures.
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Fig. 3. ROC curve

For both SVM models we used an RBF kernel and ob-
tained the C and γ hyperparameter values through use of our
custom distributed grid search implementation. For the Ran-
dom Forest model, we found that using 150 trees and a dirty
to clean class weighting of 0.003 : 1 gave the best cross-
validation (CV) performance at low false positive rates.

The CV performance for each classifier is shown in Fig-
ure 3. As is apparent from the performance results, the best
results for low false positive rates were obtained using a Ran-
dom Forest (RF) model with only dense features. The best
results with respect to the area-under-the-ROC-curve metric
(AUC) were achieved by the SVM model with sparse fea-
tures.

We validated CV results by manually reviewing predic-
tions on unlabeled hashes. Our best field prediction results
originated from the SVM model using both sparse and dense
features. As is apparent from the ROC plots, the sparse fea-
tures add much value in the case of the SVM models, and
since the Random Forest model only leverages the dense fea-
ture space, there is likely additional potential for classification
using the sparse features in combination with the Random
Forest model. We leave the task of combining the Random
Forest model with another model using the sparse features to
future work.

5.2. Feature Ranking

To determine the most informative features, we performed
a feature ranking using Random Forest. Table 1 shows the
Top 25 features we identified. When aggregating individual
process executions into per-hash behavior, we mainly use the
mean and variance of each metric as resulting feature. Fea-
tures based on mean tend to rank higher in our evaluation.

At the children/grandchildren level, we use mean, vari-
ance, maximum, and minimum to aggregate the data for all
children processes into a single metric for the parent (which



Table 1. Feature ranking of Top 25 dense features using Random Forest

Rank Feature Metric
1 Mean: fraction of vowels in names of written files 0.028437
2 Mean: number of files deleted 0.019688
3 Mean: length of second level domain in DNS requests 0.017953
4 Mean: length of names of written files 0.017675
5 Mean: fraction of non-letter characters in names of written files 0.016428
6 Mean: fraction of digits in names of written files 0.014585
7 Mean: fraction of vowels in DNS names looked up 0.013168
8 Mean: length of DNS names looked up 0.011869
9 Mean: number of TCP connections to port 80 0.011654

10 Mean: fraction of vowels in second level domain in DNS requests 0.011223
11 Mean: number of registry value updates to auto-start extensibility points 0.010596
12 Mean: maximum length of command line parameters of spawned children and grandchildren 0.010152
13 Variance: fraction of vowels in names of written files 0.010063
14 Variance: fraction of non-letter characters in names of written files 0.009658
15 Mean: average length of command line parameters of spawned children 0.009638
16 Mean: minimum length of command line parameters of spawned children 0.009363
17 Mean: minimum length of command line parameters of spawned children and grandchildren 0.009280
18 Variance: fraction of digits in names of written files 0.009269
19 Mean: count of connections to non-private IPs 0.009248
20 Mean: average length of command line parameters of spawned children and grandchildren 0.009087
21 Mean: maximum length of command line parameters of spawned children 0.008672
22 Mean: number of executables or scripts written 0.008311
23 Mean: number of labels in DNS names looked up 0.008193
24 Variance: length of names of written files 0.007572
25 Mean: number of PE files written to temporary directories 0.007485

then again is aggregated using mean or variance as described
in the last paragraph). The feature ranking shows that for in-
formative features the classifier can make use of multiple ag-
gregation techniques. For example, multiple variations of the
command line length metric made it into the Top 25.

6. DISCUSSION

Since being deployed, the SVM model has shown good per-
formance in the field and has been able to identify a number
of malware specimens that have evaded signature-based AV
at the time of their observed execution.

Valkyrie’s focus on the first 100 seconds of execution
means that it can react quickly, cull incoming data early to
reduce computational cost in the cloud, and its training data
can be augmented with sandbox data without introducing
artifacts. However, it also allows malware to evade detection
by delaying malicious activity. There are a number of mal-
ware families that employ this delayed activity tactic with
the intent of avoiding detection of traditional sandbox-based
techniques, which means these families are generally not tar-
geted by Valkyrie. As compensation, our approach is to stack
various classifiers to operate over different timeframes, which
allows us to make multiple speed/effectiveness trade-offs.

A fair amount of the raw data is comprised of high-level
non-security specific events. As part of this work we have
shown that this type of data can be used for malware classi-
fication purposes given a sufficient amount of incoming raw
data. On the one hand, our ability to get raw data from a
large sensor footprint comprised of heterogeneous environ-
ments has been instrumental. On the other hand, once all data
is collected, a scalable computational framework is required
since all computation is now centralized. Using Apache Spark
for feature extraction over raw data has allowed us to quickly
express complex data flows (which is critical when doing fea-
ture engineering research) while being able to easily scale out
to real-world data sizes.

The cloud-based classification model has also allowed us
to impose minimal requirements on endhosts. Since data from
many machines is aggregated, an individual machine does not
need to provide high fidelity data. Instead, we are able to com-
pensate by utilizing a higher event volume across the whole
population.

7. CONCLUSION

In this paper we have presented a novel classification system
for identifying malicious Portable Executable files based on



behavioral data called Valkyrie. It utilizes large-scale deploy-
ment sensor data and the Spark data processing framework to
create feature vectors that are fed to a LibSVM classifier that
then makes predictions about unknown binaries to determine
if they exhibit malicious behavior. Using cross-validation and
prediction results on real-world samples, we have found that
Valkyrie is able to effectively determine whether an executed
binary file is malicious with a very low false positive rate.

Our future work will focus on combining different feature
spaces and different models to enhance our performance re-
sults from the Random Forest classifier. That work will also
serve as a gateway into adding features from static analysis of
binary files.
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