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Abstract—Unsolicited commercial or bulk emails or emails 

containing virus currently pose a great threat to the utility of 

email communications. A recent solution for filtering is 

reputation systems that can assign a value of trust to each IP 

address sending email messages. By analyzing the query patterns 

of each participating node, reputation systems can calculate a 

reputation score for each queried IP address and serve as a 

platform for global collaborative spam filtering for all 

participating nodes. In this research, we explore a behavioral 

classification approach based on spectral sender characteristics 

retrieved from such global messaging patterns. Due to the large 

amount of bad senders, this classification task has to cope with 

highly imbalanced data. In order to solve this challenging 

problem, a novel Granular Support Vector Machine – Boundary 

Alignment algorithm (GSVM-BA) is designed. GSVM-BA looks 

for the optimal decision boundary by repetitively removing 

positive support vectors from the training dataset and rebuilding 

another SVM. Compared to the original SVM algorithm with 

cost-sensitive learning, GSVM-BA demonstrates superior 

performance on spam IP detection, in terms of both effectiveness 

and efficiency. 

Keywords—spam filtering, data mining, class imbalance, 

granular support vector machine 

I.  INTRODUCTION 

As spam volumes are continuing to increase, the need for 
fast and accurate systems to filter out malicious emails and 
allow good emails to pass through results in a great motivation 
for the development of email reputation systems. These 
systems assign a reputation value to each sender based on e.g. 
the IP address from which a message originated. This value 
reflects the trustworthiness of the sender. Traditional content 
filtering anti-spam systems can provide highly accurate 
detection rates but are usually prohibitively slow and poorly 
scalable to deploy in high-throughput enterprise and ISP 
environments.  Reputation systems can provide more dynamic 
and predictive approaches to not only filtering out unwanted 
mails but also identifying good messages, thus reducing the 
overall false positive rate of the system.  In addition, reputation 
systems provide real-time collaborative sharing of global 
intelligence about the latest email threats, providing instant 

protection benefits to the local analysis that can be performed 
by a filtering system. 

One such reputation system is Secure Computing’s 
TrustedSource™ [1]. TrustedSource operates on a wide range 
of data sources including proprietary and public data. The latter 
includes public information obtained from DNS records, 
WHOIS data, or real-time blacklists (RBLs). The proprietary 
data is gathered by over 5000 IronMail™ appliances that give a 
unique view into global enterprise email patterns. Based on the 
needs of the IronMail administrator, the appliance can share 
different levels of data and can query for reputation values for 
different aspects of an email message. Currently, 
TrustedSource can calculate a reputation value for the IP 
address a message originated from, for URLs in the message, 
or for message fingerprints. The classification algorithm 
presented in this research uses queries for IPs as input to detect 
spam sender IPs among them.  

The rest of the paper is organized as follows. Section 2 
describes the data we use to build the classifier. Section 3 gives 
a brief review for research on imbalanced classification. In 
Section 4, GSVM-BA is presented in detail. Section 5 reports 
performance numbers of GSVM-BA on IP classification. 
Finally, Section 6 concludes the paper. 

II. DATA AND FEATURES CONSIDERED 

A. Raw Data 

For this research, we consider the simplest case in which 
the system is queried by appliances for IP addresses and the 
query information is fed back into the system for analysis. 
When an email message is received by an IronMail appliance, 
it will query the TrustedSource system for the reputation of this 
IP address. Hence, the query strongly correlates to a message 
transmission. This query type will give the system three pieces 
of information: the queried IP (Q), the source of the query (S), 
and the timestamp (T). Each QST tuple indicates that Q tried to 
send a message to S at time T. 

The level of data in this type of query is akin to the level of 
data in a standard RBL IP lookup. Some previous work has 



been done to detect malicious hosts based on the patterns of 
such queries by Ramachandran et al. in [2]. They investigate a 
dataset of RBL queries to spot exploited machines in botnets 
that are querying an RBL to test whether members of the same 
botnet have been blacklisted. 

B. Feature Generation 

Based on the QST data, we generate two sets of feature 
vectors. The first is called the breadth vector; the second is 
called the spectral vector. 

The breadth vector contains information regarding to how 
many different IronMail appliances a particular IP tries to send, 
how many messages it sends, how many sending sessions 
(bursts) each IronMail saw, how many messages are in a burst, 
and how many global active periods an IP had. This data is 
based on the Q, S, and T information. 

The spectral vector is concerned with the actual sending 
pattern of an IP. For this data, only Q and T are considered. For 
each IP, we look at a configurable timeframe t and divide it 
into N slices. This results in a sequence cn where cn is the 
number of messages received in slice n. This sequence is then 
transformed into the frequency domain using a discrete Fourier 
transform (DFT). Since we do not consider time zones or time 
shifts, we are only interested in the magnitude of the complex 
coefficient of the transformed sequence and throw away the 
phase information. This results in the sequence Ck as shown in 
(1). 
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C0 is the constant component that corresponds to the total 
message count, which is already part of the breadth data. We 
do not want to consider it for the spectral pattern again and 
normalize the remaining coefficients by it resulting in a new 
sequence C’k = Ck/ C0. Furthermore, since the input sequence cn 
is real, all output coefficients Ck with k > N/2 are redundant due 
to the symmetry properties of the DFT and can be ignored. 

To build an example classifier, we chose t = 24h and N = 
48. Each cn holds then the message counts for an IP during a 30 
minute time window. This results in 24 usable raw spectral 
features, C’1 to C’24. 

An evaluation of these raw features indicated a lot of 
energy in the higher coefficients of spam senders. This means 
that spam senders do not have a regular low frequency sending 
behavior in our 24 hour time window. We achieved good 
results with derived features based on the raw factors that take 
this observation into account. We grouped C’2 to C’4 (Group 1) 

and C’5 to C’24 (Group 2) and use the mean and standard 
deviation of both groups as four additional features per IP. C’1  
is considered separately. To evaluate these features, the Signal-
to-Noise Ratio (S2N), defined as the distance of the arithmetic 
means of the spam and non-spam classes divided by the sum of 
the corresponding standard deviations [3], is used. Table I 
shows these values. Fig. 1 and Fig. 2 show the density of two 
of these derived features.  

Both S2N and the density analysis show that these derived 
features are potentially informative to discriminate spam IPs 
from non-spam ones. 

III. IMBALANCED CLASSIFICATION 

How to build an effective and efficient model on a huge and 
complex dataset is a major concern of the science of 
knowledge discovery and data mining. With emergence of new 
data mining application domains such as message security, e-
business and biomedical informatics, more challenges are 
coming. Among them, highly skewed data distribution has 
been attracting noticeably increasing interest from the data 
mining community due to its ubiquitousness and importance 
[4-12].  

TABLE I.  SIGNAL TO NOISE RATIO OF DERIVED FEATURES 

Feature S2N 

Group 1 Mean 0.580 

Group 1 Std Dev 0.232 

Group 2 Mean 0.404 

Group 2 Std Dev 0.448 
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Figure 1. Density of the group 1 mean. 
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Figure 2. Density of the group 2 standard deviation. 

 



A. Class Imbalance 

Class imbalance happens when the distribution on the 
available dataset is highly skewed. This means that there are 
significantly more samples from one class than samples from 
another class for a binary classification problem. Class 
imbalance is ubiquitous in data mining tasks, such as 
diagnosing rare medical diseases, credit card fraud detection, 
intrusion detection for national security, etc. 

For spam filtering, each IP is classified as spam or non-
spam based on its sending behavioral patterns. This 
classification is highly imbalanced. As shown in Table II, over 
95% of the IPs are spam IPs. As our current target in this 
research is to detect spam IPs, we define spam IPs as positive 
and non-spam IPs as negative. 

B. Metrics for Imbalanced Classification 

Many metrics have been used for performance evaluation 
of classifications. All of them are based on the confusion 
matrix as shown at Fig. 3. With highly skewed data 
distribution, the overall accuracy metric defined by (2) is not 
sufficient any more. For example, a naive classifier that 
identifies all samples as spam will have a high accuracy of 
95%. However, it is totally useless to detect spam IPs because 
all negative IPs are also identified as spam IPs by mistake (too 
many FPs). 
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To get optimal balanced classification ability, sensitivity as 
defined in (3) and specificity as defined in (4) are usually 
adopted to monitor classification performance on two classes 
separately. Notice that sensitivity is sometimes called true 
positive rate or positive class accuracy while specificity is 
called true negative rate or negative class accuracy. Based on 
these two metrics, g-mean has been proposed in [11], which is 
the geometric mean of classification accuracy on negative 

samples and classification accuracy on positive samples. Its 
definition is shown in (5). The Area Under ROC curve (AUC-
ROC) metric [13] can also indicate a classifier’s balance ability 
between sensitivity and specificity as a function of varying a 
classification threshold. 
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Both g-mean and AUC-ROC can be used if the target is to 
optimize classification performance with balanced positive 
class accuracy and negative class accuracy. 

On the other hand, sometimes we are interested in highly 
effective detection ability for only one class. For example, for 
credit card fraud detection problem, the target is detecting 
fraudulent transactions. For diagnosing a rare disease, what we 
are especially interested in is to find patients with this disease. 
For such problems, another pair of metrics, precision as defined 
in (6) and recall as defined (7), is often adopted. Notice that 
recall is the same as sensitivity. The f-value defined in (8) is 
used to integrate precision and recall into a single metric for 
convenience of modeling. Similarly, the Area Under 
Precision/Recall Curve (AUC-PR) [14] is also used to indicate 
the detection ability of a classifier between precision and recall 
as a function of varying a classification threshold. 
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Because our target is to detect spam IPs, metrics concerning 
one class detection ability are more suitable than metrics 
concerning balanced classification ability. However, if the 
precision is too low, the classifier has no practical usefulness. 
For our application, it is required that the precision is higher 
than 99.8%. With this prerequisite in mind, we are also trying 
to increase the recall. 

C. Methods for Imbalanced Classification 

Many methods have been proposed for imbalanced 
classification and some good results have been reported [4]. 
These methods can be categorized into three different classes: 
cost sensitive learning, boundary alignment, and sampling. 
Sampling can be further categorized into two subclasses: 

TABLE II.  QST DATA DISTRIBUTION AVERAGED ON 08/01/2006-
08/31/2006 

 Ratio 

Spam IPs 95.57% 

Non-spam IPs 4.43% 
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Figure 3. The confusion matrix. 



oversampling the minority class or undersampling the majority 
class. Interested readers may refer to [5] for a good survey.  

For a real world classification task like spam IP detection, 
there are usually a large amount of IP samples. These samples 
need to be classified quickly so that spam messages from those 
IPs can be blocked in time. However, cost sensitive learning, 
boundary alignment, or oversampling usually increases 
modeling complexity and results in slow classification. On the 
other hand, undersampling is a promising method to improve 
classification efficiency. Unfortunately, random undersampling 
may not generate accurate classifiers because informative 
majority samples may be removed.  

In this paper, granular computing and the support vector 
machine (SVM) algorithm are utilized for undersampling by 
keeping informative samples while eliminating irrelevant, 
redundant, or even noisy samples. After undersampling, data is 
cleaned and hence a good classifier can be modeled for IP 
classification both in terms of effectiveness and efficiency. 

D. SVM for Imbalanced Classification 

SVM embodies the Structural Risk Minimization (SRM) 
principle to minimize an upper bound on the expected risk 
[15,16]. Because structural risk is a reasonable trade-off 
between the training error and the modeling complication, 
SVM has a great generalization capability. Geometrically, the 
SVM modeling algorithm works by constructing a separating 
hyperplane with the maximal margin.  

Compared with other standard classifiers, SVM performs 
better on moderately imbalanced data. The reason is that only 
support vectors (SVs) are used for classification and many 
majority samples far from the decision boundary can be 
removed without affecting classification [7]. However, 
performance of SVM is significantly deteriorated on highly 
imbalanced data. For this kind of data, the SRM principle is 
prone to find the simplest model that best fits the training 
dataset. Unfortunately, the simplest model is exactly the naive 
classifier that identifies all samples as majority. 

Previous research that aims to improve the effectiveness for 
SVM includes the following: 

Raskutti et al. explored effects of different imbalanced 
compensation techniques on SVM [8]. They demonstrated that 
a one-class SVM that learned only from the minority class 
sometimes can perform better than an SVM modeled from two 
classes. 

Akbani et al. proposed the SMOTE with Different Costs 
algorithm (SDC) [7]. SDC conducts oversampling on the 
minority class by applying Synthetic Minority Oversampling 
TEchnique (SMOTE) [10], a popular oversampling algorithm, 
with different error costs. As a result, the boundary of the 
learned SVM can be better defined and far away from the 
minority class.  

Wu et al. proposed the Kernel Boundary Alignment 
algorithm (KBA) that adjusts the boundary toward the majority 
class by directly modifying the kernel matrix [9]. In this way, 
the boundary is expected to be closer to the “ideal” boundary. 

The problem of the one-class SVM is that it actually 
performs worse in many cases compared to a two-class SVM. 
SDC and KBA are also not suitable for IP classification 
because they usually take a longer time for classification than 
SVM. As demonstrated in our empirical studies, SVM itself is 
already too slow to be adopted for IP classification. 

The speed of SVM classification depends on the number of 
SVs. For a new sample x, K(x,sv) is calculated for each SV. 
Then it is classified by aggregating these kernel values with a 
bias. To speed up SVM classification, one potential method is 
to decrease the number of SVs. 

IV. GSVM-BA ALGORITHM 

In this work, a novel Granular Support Vector Machines-
Boundary Alignment algorithm (GSVM-BA) is designed with 
the principle of granular computing to build a more effective 
and more efficient SVM for IP classification.  

A. Granular Computing and GSVM 

Granular computing represents information in the form of 
some aggregates (called “information granules”) such as 
subsets, subspaces, classes, or clusters of a universe. It then 
solves the targeted problem in each information granule 
[17,18]. There are two principles in granular computing. The 

  
Figure 4. GSVM-BA can push the boundary back close to the ideal position with fewer SVs. The dotted line is the 

ideal boundary and the solid line is the learned boundary. 



first principle is divide-and-conquer to split a huge problem 
into a sequence of granules (“granule split”); The second 
principle is data cleaning to define the suitable size for one 
granule to comprehend the problem at hand without getting 
buried in unnecessary details (“granule shrink”). As opposed to 
traditional data-oriented numeric computing, granular 
computing is knowledge-oriented [18]. By embedding prior 
knowledge or prior assumptions into the granulation process 
for data modeling, better classification can be achieved.  

A granular computing-based learning framework called 
Granular Support Vector Machines (GSVM) was proposed in 
[19]. GSVM combines the principles from statistical learning 
theory and granular computing theory in a systematic and 
formal way. GSVM works by extracting a sequence of 
information granules with granule split and/or granule shrink, 
and then building an SVM on some of these granules when 
necessary. 

The main potential advantages of GSVM are: 

• Compared to SVM, GSVM is more adaptive to the 
inherent data distribution by trading off between local 
significance of a subset of data and global correlation 
among different subsets of data, or trading off between 
information loss and data cleaning. Hence, GSVM may 
improve the classification performance. 

• GSVM may speed up the modeling process and the 
classification process by eliminating redundant data 
locally. As a result, it is more efficient on huge 
datasets. 

B. GSVM-BA 

The data cleaning principle of granular computing makes 
GSVM-BA ideal for spam IP detection on highly imbalanced 
data derived from QST data. 

SVM assumes that only SVs are informative to 
classification and other samples can be safely removed. 
However, for highly imbalanced classification, the majority 
class pushes the “ideal” decision boundary toward the minority 
class [7,9]. As demonstrated in Fig. 4(a), positive SVs that are 
close to the learned boundary may be noisy. Some very 
informative samples may hide behind them. 

To find these informative samples, we can conduct cost-
sensitive learning to assign more penalty values to false 
positives (FP) than false negatives (FN). This method is named 
SVM-CS. However, SVM-CS increases the number of SVs 
(Fig. 4(b)), and hence slows down the classification process. 

In contrast to this, GSVM-BA looks for these informative 
samples by repetitively removing positive support vectors from 
the training dataset and rebuilding another SVM. GSVM-BA 
embeds the “boundary push” assumption into the modeling 
process. After an SVM is modeled, a “granule shrink” 
operation is executed to remove corresponding positive SVs to 
produce a smaller training dataset, on which a new SVM is 
modeled. This process is repeated to gradually push the 
boundary back to its ideal location, where the optimal 
classification performance is achieved. 

Empirical studies in the next section show that GSVM-BA 
can compute a better decision boundary with much fewer 
samples involved in the classification process (Fig. 4(c)). 
Consequently, classification performance can be improved in 
terms of both effectiveness and efficiency. 

Fig. 5 sketches the GSVM-BA algorithm. The first SVM is 
always the naive one by default. 

V. EXPERIMENTS 

For spam IP detection experiments, we run SVM-CS and 
GSVM-BA on a workstation with a Pentium® M CPU at 1.73 
GHz and 1 GB of memory.  

A. Data Modeling 

The QST data gathered on 07/31/2006 is used for training 
and the QST data from between 07/24/2006 and 07/30/2006 is 
used for validation. The training dataset is normalized so that 
the value of each input feature is falls into the interval of [-1,1]. 
The validation dataset is normalized correspondingly. An SVM 
with the RBF kernel is adopted with parameters (γ, C) 
optimized by grid search [20] on the validation dataset. 

For SVM-CS, the cost for the positive class is always 1 and 
the cost for the negative class is tuned and optimized on the 
validation dataset. Similarly, the number of times the “granular 
shrink” operation is executed is also optimized on the 
validation dataset for GSVM-BA. 

After an SVM is modeled, it is applied on the normalized 
QST data gathered between 08/01/2006 and 08/31/2006 and 
the corresponding performance is reported. 

 

 
 

Figure 5. GSVM-BA algorithm. 



B. Result Analysis 

Table III shows the effectiveness of GSVM-BA and SVM-
CS. GSVM-BA is better in terms of both precision and recall. 
GSVM-BA can identify about 129K TPs and 160 FPs while 
SVM-CS catches about 115K TPs and 220 FPs everyday. Note 
that many FPs reported by GSVM-BA are sending both spam 
and legitimate messages. Hence, these IPs are actually spam 
senders, but since they send ham messages as well, we do not 
want to catch them with this classifier. 

As demonstrated in Table IV, GSVM-BA takes about 10 
minutes for classification with only 581 SVs while SVM-CS 
needs more than 3 hours with more than 10K SVs. The 
superior efficiency of GSVM-BA is crucial for our application 
to detect and block spam senders on time before they can send 
large amount of messages to TrustedSource-enabled mail 
servers. 

 

VI. CONCLUSIONS 

A new GSVM modeling algorithm, named GSVM-BA, is 
designed specifically to deal with highly imbalanced QST data 
based on global messaging patterns. After extracting 
informative breadth and spectral features from simple QST 
sending patterns, GSVM-BA works to gradually push the 
decision boundary back to its “ideal” position. In this modeling 
process, the dataset is cleaned and hence fewer samples/support 
vectors are involved in the classification process thereafter. 
Compared to SVM with cost-sensitive learning, GSVM-BA is 
both efficient and effective as our empirical studies 
demonstrated. The resulting classifier contributes to the 
TrustedSource reputation system as one source of input and 
prevents malicious or unwanted messages being delivered to 
email users. 
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TABLE III.  EFFECTIVENESS COMPARISON ON 08/01/2006-08/31/2006 

 SVM-CS GSVM-BA 

Precision 99.81±0.07% 99.87±0.06% 

Recall  42.02±5.96% 47.14±5.97% 

 

TABLE IV.  EFFICIENCY COMPARISON ON 08/01/2006-08/31/2006 

 SVM-CS GSVM-BA 

#SVs 10393 581 

Classification time >3 hours 10 minutes 

 

 


