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Abstract

Spam sender detection based on email subject data is a

complex large-scale text mining task. The dataset consists

of email subject lines and the corresponding IP address of

the email sender. A fast and accurate classifier is desirable

in such an application. In this research, a highly scalable

SVM modeling method, named Granular SVM with Random

granulation (GSVM-RAND), is designed. GSVM-RAND ap-

plies bootstrapping to extract a number of subsets of sam-

ples from the original training dataset. Each training subset

is then projected into a feature subspace randomly selected

from the original feature space. Here we call a granule such

a subset of samples in such a feature subspace. A local SVM

is then modeled in each granule. For a new sample, it is

firstly projected into each granule in which the local SVM is

fired to make a prediction. After that, all SVM predictions

are aggregated by Bayesian Sum Rule for a final decision.

GSVM-RAND is easy to be parallelized and hence efficient

and highly scalable. GSVM-RAND is also effective by inte-

grating a large number of weak, low-correlated local SVMs.

1 Introduction

In this research we present a novel algorithm based on

Support Vector Machine (SVM) classification [17]. The

proposed algorithm is able to classify high dimensional

sparse data as encountered in text mining efficiently and ef-

fectively. We apply this new algorithm to an email dataset

consisting of records of email subject text lines and the cor-

responding sender IP address. In this data, we mine mali-

cious IP addresses (i.e. IPs sending spam, virus, and phish-

ing messages).

Unsolicited spam, virus, and phishing messages pose

a great threat to email communications and company net-

works can easily get overwhelmed with the high volume of

these malicious messages. A recent development to stem

this flood of messages is email reputation systems, which

can assign a reputation to certain identifiers observed in a

message [2]. This allows to quickly filter out a large amount

of unwanted messaging traffic by doing a simple lookup in

the reputation system’s database.

One such reputation system is TrustedSource [1]. Trust-

edSource allows looking up reputation information and sta-

tistical data on identifiers like IP addresses, message fin-

gerprints, and URLs. In previous work, we presented how

even simple query information purely based on queries for

the sending IP of a message can be used to detect mali-

cious senders by aggregating global messaging data [14].

Ramachandran et al. propose a related approach that is able

to detect malicious IPs if information on the destination do-

main is available [12].

In this research, we focus on the classification of IP ad-

dresses based on the email subjects they sent. Data is gath-

ered from selected email servers that transmit pairs of a

sending IP address and email subjects to the TrustedSource

analysis center. Since this dataset is extensive and spam

senders tend to have short periods of activity, an important

design goal for a classifier is computational efficiency.

2 Machine Learning for Classification

2.1 Support Vector Machine

It is a binary classification problem to discriminate mali-

cious sending IP addresses from legal ones. Given a training

dataset Tr with n samples (x1, y1), (x2, y2), ..., (xn, yn),
where xi is a feature vector in a d-dimensional feature space

Rd and yi ∈ {−1,+1} is the corresponding class label,

1 ≤ i ≤ n, the task is to find a classifier with a decision

function f(x, θ) such that y = f(x, θ), where y is the class

label for x, θ is a vector of unknown parameters.



SVM is a classification technique based on statistical

learning theory [17]. Geometrically, the SVM modeling al-

gorithm finds an optimal hyperplane with the maximal mar-

gin to separate two classes, which requires to solve the fol-

lowing optimization problem.

maximize
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n
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0 ≤ αi ≤ C, i = 1, 2, ...n

where αi is the weight assigned to the training sample xi.

If αi > 0, xi is called a support vector. C is a “regulation

parameter” used to trade-off the training accuracy and the

model complexity so that a superior generalization capabil-

ity can be obtained. K is a kernel function, which is used

to measure the similarity between two samples. A popu-

lar RBF kernel function, as shown in (2), is used in this

research.

K(xi,xj) = exp(−γ‖xi − xj‖
2), γ > 0 (2)

After the weights are determined, a test sample x is clas-

sified by

y = sign

(

n
∑

i=1

αiyiK(xi,x)

)

, (3)

sign(a) =

{

+1, if a > 0
−1, otherwise

To determine the values of < γ,C >, a Cross Validation

(CV) process is usually conducted on the training dataset.

CV is also used to estimate the generalization capability

on new samples that are not in the training dataset. A k-

fold CV randomly splits the training dataset into k approx-

imately equal-sized subsets, leaves out one subset, builds a

classifier on the remaining samples, and then evaluates clas-

sification performance on the unused subset. This process

is repeated k times for each subset to obtain the CV per-

formance over the whole training dataset. CV is computa-

tionally expensive and hence is not feasible for time-critical

classification tasks.

2.2 Granular Computing

Granular computing represents information in the form

of some aggregates (called information granules) such as

subsets, subspaces, classes, or clusters of a universe. It then

solves the targeted problem in each information granule

[10]. There are two principles in granular computing. The

first principle is divide-and-conquer to split a huge prob-

lem into a sequence of granules (granule split); The second

principle is data cleaning to define the suitable size for one

granule to comprehend the problem at hand without get-

ting buried in unnecessary details (granule shrink). As op-

posed to traditional data-oriented numeric computing, gran-

ular computing is knowledge-oriented [3]. By embedding

prior knowledge into the granulation process for data mod-

eling, better classification can be obtained.

A granular computing-based learning framework called

Granular Support Vector Machines (GSVM) was proposed

in [13]. GSVM combines the principles from statistical

learning theory and granular computing theory in a system-

atic and formal way. GSVM works by extracting a sequence

of information granules with granule split and/or granule

shrink, and then building an SVM on some of these granules

when necessary. The main potential advantages of GSVM

are:

1. GSVM is more sensitive to the inherent data distribu-

tion by trading off between local significance of a sub-

set of data and global correlation among different sub-

sets of data, or trading off between information loss

and data cleaning. Hence, GSVM may improve the

classification performance.

2. GSVM may speed up the modeling process and the

classification process by eliminating redundant data lo-

cally. As a result, it is more efficient and scalable on

huge datasets.

2.3 Related Work

Some works have been reported on SVM ensembling

with bagging [7, 6, 16, 18, 15].

Kim et al. [7] proposed to use the SVM ensembles with

bagging to improve the classification accuracy. The pro-

posed method demonstrated 1-2% accuracy improvement

on SVM modeling in their experiments. However, the ex-

periments were only conducted on two small datasets and

no efficiency analysis was given.

Collobert et al. [6] designed a parallel mixture of SVMs

for very large scale problems. Compared to one SVM, both

effectiveness and efficiency improvements were observed

with the gated SVM mixture. However, they did not use

bagging but randomly divide the training dataset into ap-

proximately equal sized subsets. The subsets need to be

adjusted in the following recursive process to ensure a bal-

ance among them. Without bagging, their method had to

estimate the generalization capability with expensive cross-

validation process. And the datasets in their experiments

are low dimensional with only 54 or 135 input features.



In [7, 6], both of them observed the best performance by

learning a meta classifier for aggregation. However, meta

learning is expensive and hence maybe not desired on a

large dataset.

Valentini et al. [16] proposed bagging of low-bias

SVMs. The target is to reduce bias instead of classification

error for each individual SVM. The experiments indicated

that it often improves classification accuracy, compared to

one well-tuned SVM and to bags of individually well-tuned

SVMs. However, the idea was only tested on small datasets

and no efficiency analysis was given. It is also expensive to

tune individual SVMs separately in their method.

Yan et al. [18] presented an SVMs ensemble method

based on bagging and fuzzy integral. The simulating results

demonstrated their method outperformed a single SVM and

traditional SVMs aggregation technique via major voting in

terms of accuracy. They also proposed to tune each individ-

ual SVM separately. However, the idea was only tested on

small datasets and no efficiency analysis was given. Only

3 or 8 times bagging were conducted in their experiments.

With a small bagging number, the ensemble classifier may

be not converged to the optimum. With a large bagging

number, it is expensive to tune individual SVMs separately

(with CV).

Tao et al. [15] used both bagging and random sub-

space for constructing an SVM ensemble to improve the

relevance feedback performance in content-based image re-

trieval. Their ABRS-SVM algorithm focused on building

SVM ensembles on highly imbalanced data in the specific

application domain. They applied a two-layer process that

generated several bootstrapping subsets first and then pro-

jected each subset into several subspaces. This method may

limit diversity among different SVMs because some SVMs

were built from the same subset. They tested ABRS-SVM

on a small size but high dimensional dataset.

All of these works were not tested on a both “high” and

“wide” dataset, i.e., with both a large number of samples

and a large number of features, which is not uncommon in

a large scale text mining application. And hence it is worth

to investigate how an SVM ensemble method with bagging

and random subspace projection behaves on such a high and

wide dataset, in terms of both effectiveness and efficiency.

These works did not also evaluate classification ef-

fectiveness with Receiver Operating Characteristic (ROC)

analysis [4], which is typically desirable in a real world clas-

sification system.

3 GSVM-RAND

In this research, we design a novel GSVM modeling al-

gorithm by utilizing bootstrapping and random subspace

projection for granulation. We also investigate three dif-

ferent SVM modeling aggregation methods.

Figure 1. GSVMRAND training

3.1 Bootstrapping

Given a training dataset Tr of n samples, a bootstrap-

ping process generates a new in-bag subset Tr IB of size

n′(n′ <= n) by sampling uniformly from Tr with replace-

ment. By sampling with replacement it is likely that some

samples are repeated in Tr IB. If n′ = n (100% bootstrap-

ping), with large n the set Tr IB is expected to have 63.2%

samples of Tr, the rest being duplicates. And the remain-

ing 36.8% samples form another out-of-bag subset Tr OB.

If n′ < n, for example n′ ∼= n
10

(10% bootstrapping), less

samples are expected to be in Tr IB and more in Tr OB.

We can do bootstrapping multiple times on Tr to gener-

ate many different in-bag subsets. A smaller n′ would fur-

ther encourage diversity among different in-bag subsets. A

smaller n′ is also beneficial to improve efficiency because

the in-bag subsets are smaller.

3.2 Random Subspace Projection

After each bootstrapping is done, the in-bag subset and

the out-of-bag subset are projected into a subspace. The

subspace is constructed by randomly selecting a small part

of features from the original feature space without replace-

ment. Different bootstrapping datasets are (very likely) pro-



jected into different subspaces. And hence we can further

enlarge diversity among different data subsets. Here we call

a granule is created after a bootstrapping and a random sub-

space projection.

On the email subject data (as well as other text mining

vector-space-modeled data), there are typically a lot of to-

kens as features. Each token feature is low-informative and

there is large redundancy among them. The redundancy

suggests us to select only a few of features in each granule.

By selecting a smaller number of features each local SVM

is less accurate but we can further enlarge diversity (low-

correlation) among different granules. A smaller number of

features also induces faster modeling.

3.3 Local SVM Modeling

On each granule a local SVM is modeled on the in-bag

data subset in the feature subspace. Many previous research

works with bagging suggest that a local classifier should be

weak and low-correlated to each other [7, 6, 16, 18, 15].

Guided by this suggestion, the random granulation process

is prone to select small granules with both a small number

of samples and a small number of features. As such, it en-

courages diversity among different granules both data-wise

and feature-wise. So we can expect low correlation among

local SVMs, instead of classification strength of each local

SVM.

3.4 Aggregation

After local SVMs are modeled, the next step is to ag-

gregate the predictions from local SVMs to make a final

decision. Here we try three different aggregation operators.

The simplest and most common aggregation method is

Major Voting (MV), which is simply to sum up all predic-

tion labels from local SVMs as the final prediction.

Because an SVM outputs a decision value as well as a

label, we also try to sum up the decision values as the final

prediction. Here we name it Decision Aggregation (DA).

We also try Bayesian Sum Rule (BSR) [9, 11, 8]. The

basic idea is to output probability estimate from each local

SVM. And then all probability estimates are summed up as

the final prediction [18, 15].

Some previous works also proposed to learn a meta clas-

sifier for aggregation [7, 6]. GSVM-RAND does not adopt

meta learning as it increases modeling complexity.

3.5 OutOfBag Effectiveness Evaluation

Bootstrapping splits the training dataset into an in-bag

subset and an out-of-bag subset. If we do 100 times 100%

bootstrapping, averagely a sample is not used for 36.8 local

SVMs training. These 36.8 local SVM predictions can be

Figure 2. GSVMRAND testing

Table 1. Subject data on NOV/06/2007
#tokens 569,823

#IPs 259,953

#non-spam IPs 12,131

#spam IPs 247,822

aggregated and used as the estimation of classification on

unseen new samples. If the bootstrapping ratio is 10%, av-

eragely 93.7 local SVM predictions can be aggregated for

out-of-bag estimation.

Figures. 1-2 sketch the training phase and the testing

phase of GSVM-RAND, respectively.

4 Experiments

Classification modeling is carried out on a workstation

with a Intel Xeon CPU at 1.86GHz and 16 GB of memory.

4.1 Experiment Design

Table 1 lists the characteristic of the dataset for

modeling. We retrieve 259,953 IPs sending emails in

NOV/06/2007. For each IP, we concatenate the subject lines



Table 2. Effectiveness/Efficiency Result
Method AUC-Testing Modeling time

SVM 0.99385 933 mins

GSVM-BSR 0.98762 437 mins

GSVM-MV 0.98602 744 mins

GSVM-DA 0.95667 759 mins

of all emails sent from it as one single string, separated by

spaces. And then these long subject strings are tokenized

and 569,823 tokens are extracted. Finally Term Frequency-

Inverse Document Frequency (TF-IDF) based feature vec-

tors are built for these IPs on the high dimensional token

space. The task is to build a classifier to discriminate spam

IPs (labeled 1) from non-spam IPs (labeled −1) on such a

dataset. The dataset is randomly divided into 3 equal-sized

subsets, in which the ratio of non-spam over spam is also

equal. Two subsets are combined as the training dataset and

another subset is leaved as the testing dataset.

We choose LIBSVM [5] for SVM modeling with the

RBF kernel. Because spam IPs are more than non-spam

ones, the False Negative (FN) cost is 1 and the False Posi-

tive (FP) cost is 20.4272 for balance.

For SVM modeling, 5-fold CV is conducted on the train-

ing dataset for generalization capability estimation.

Notice that GSVM-RAND modeling does not need CV

because out-of-bag accuracy is used as the estimation of

generalization capability. We do 10% bootstrapping 100

times. In each bootstrapping 10% samples are randomly

selected with replacement into the in-bag dataset and the re-

maining samples are used for out-of-bag estimation. In each

granule we randomly select 6% of features for modeling.

Averagely, each feature is selected into 6 granules. 10% of

samples and 6% of features form a very small granule on

which a local SVM can be quickly generated. The small

size of each granule also encourages diversity among lo-

cal SVMs instead of strength/accuracy of each local SVM.

We expect bootstrapping aggregation can combine the 100

weak local SVMs into 1 highly accurate classifier. We

try Major Voting, Decision Aggregation and Bayesian Sum

Rule for aggregation of the 100 local SVMs.

4.2 Result Analysis

The modeling effectiveness/efficiency results are re-

ported in Table 2. Area Under the Receiver Operating

Characteristic Curve (AUC) is used for effectiveness eval-

uation. SVM denotes building a single SVM with 5-fold

CV. GSVM-BSR denotes GSVM-RAND modeling with

Bayesian Sum Rule for aggregation. GSVM-MV denotes

GSVM-RAND modeling with Major Voting for aggrega-

tion. GSVM-DA denotes GSVM-RAND modeling with

Decision Value Sum for aggregation.
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Table 3. Local SVM Effectiveness
AUC Min Max Mean

Out-of-Bag 0.79912 0.89499 0.83926

Testing 0.80303 0.89612 0.84106

We observe that Bayesian Sum Rule is the most effec-

tive aggregation method. Major Voting is a little worse

while Decision Aggregation significantly decreases classifi-

cation effectiveness. Compared to one single SVM, GSVM-

RAND with Bayesian Sum Rule is almost the same accurate

but it is much faster. Notice that the modeling time includ-

ing training time plus testing time.

GSVM-RAND is by nature very easy to be parallelized.

With a well-implemented parallel GSVM-RAND on a com-

puting cluster with 100 CPUs, we can build such an ensem-

ble classifier in several minutes. This is proved to be critical

to meet the business requirement for spam filtering.

AUC values alone cannot justify the effectiveness of

GSVM-RAND. In our real spam sender detection produc-

tion system, a classifier with FP rate > 1% is not accept-

able. Fig. 3 depicts ROC curves at the cut of FP rate ≤
1%. Once again, these curves show that GSVM-RAND

is comparable to traditional SVM modeling in terms of

effectiveness. Fig. 3 also compare different aggregation

methods. Obviously Decision Aggregation is not suitable.

Bayesian Sum Rule is slightly better than Major Voting.

Table 3 gives the effectiveness of local SVMs under

GSVM-RAND with Bayes Sum Rule for aggregation. The

AUC value is increased from averagely 0.84106 for one lo-

cal SVM to 0.98762 after aggregation. Fig. 4 reports the

effect of the number of granules on AUC. The classifica-

tion effectiveness converges to the optimum with more local

SVMs joining on ensembling.
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5 Conclusion

Spam sender detection based on email subject data is a

complex large-scale text mining task. A fast and accurate

classifier is usually desirable in such an application. Sup-

port Vector Machine (SVM) is well-known as the state-of-

the-art classifier for text mining in terms of accuracy. How-

ever, SVM modeling is computationally expensive, typi-

cally super-quadratic to the number of samples and linear

to the number of features. And hence it cannot be comfort-

ably applied onto large email subject data. In this work,

a highly scalable SVM modeling method, named Granu-

lar SVM with Random granulation (GSVM-RAND), is de-

signed. GSVM-RAND applies bootstrapping to extract a

number of subsets of samples from the original training

dataset. Each training subset is then projected into a fea-

ture subspace randomly selected from the original feature

space. Here we call a granule such a subset of samples

in such a feature subspace. This random granulation pro-

cess is conducted in such a way that encourages diversity

among different granules. One local SVM is then modeled

in each granule. For a new sample, it is firstly projected into

each granule in which the local SVM is fired to make a pre-

diction. After that, all SVM predictions are aggregated by

Bayesian Sum Rule for a final decision. GSVM-RAND is

easy to be parallelized and hence efficient and highly scal-

able. GSVM-RAND is also effective by integrating a large

number of weak, low-correlated local SVMs. The experi-

ment shows that GSVM-RAND can significantly speed up

classification modeling with similar classification accuracy,

compared to one single SVM on the whole dataset.
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