
Towards an Approach for Automatically Repairing
Compromised Network Systems

Julian B. Grizzard, Sven Krasser, Henry L. Owen
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250, USA
{grizzard, sven, owen}@ece.gatech.edu

Gregory J. Conti, Eric R. Dodson
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280, USA
{conti, edodson}@cc.gatech.edu

Abstract

The widely accepted method to repair a compromised sys-
tem is to wipe the system clean and reinstall. We think that
there may be alternative methods. Specifically, we envision
systems that are capable of automatically recovering from
system compromises. Our proposed approach is a repair
agent that resides in an isolated area on the system. We use
a virtual machine approach to isolate the repair agent. The
repair agent should roll back any undesirable changes, de-
termine the point of entry, and prevent further compromise.

1. Introduction

Conventional wisdom states that once a system has been
compromised, it can no longer be trusted. An attacker that
has compromised a system can modify any state within the
system, and so it is difficult to determine the extent to which
the attacker has modified the system. Further conventional
wisdom states that the only option to re-establish trust in a
compromised system is to completely reinstall the operat-
ing system from known good media.

We propose that systems can be built in such a way that
they automatically repair themselves after a system com-
promise has occurred. We call systems that are capable
of automatically repairing themselves self-healing systems.
The entire mechanism that is responsible for repairing the
system is called the repair agent. In addition to repairing
the system, the repair agent must re-establish trust in the
compromised system such that the user can again trust the
system.

Re-establishing trust in a compromised system is a dif-
ficult problem. One important reason for this is because
traditional systems lack a true trusted computing base. In
order to incontestably re-establish trust in a compromised
system, an indisputable foundation of trust is needed. Our

solution to this problem is a trusted immutable kernel ex-
tension (TIKE). TIKE can be used as a safe haven for the
self-repair agent.

In this work, we use a virtual machine approach to es-
tablish a core foundation of trust as a proof of concept. The
host operating system runs directly on the physical machine
and is considered to be TIKE. The guest operating system
runs on virtual hardware and is considered the untrusted
system. The guest operating system accesses the physical
hardware via proxy calls through the host operating system.

We discuss how self-healing systems can be built into
the TIKE framework so that systems can automatically
recover from compromises. Furthermore, we provide an
overview of the details for such systems. There are many
challenges to an approach for self-healing systems, and in
this work we begin to address these challenges.

2. Motivation

With the proliferation of exploits targeted to today’s
computer systems, an attacker has the ability to compro-
mise a vast number of systems. Once an attacker has com-
promised a system, he or she will want to retain access to
that system even if the original security hole is patched.
In order to retain access to a compromised system, the at-
tacker will often install a rootkit onto the target system [1].
A rootkit will add a backdoor that can be used to reenter
the system at a later time. As an example of the real-world
threat, we set up a Red Hat 6.2 system on the Georgia Tech
honeynet [2], and within a matter of days an attacker had
compromised the box and installed a rootkit on the system.

We propose an approach for automatically repairing
compromised systems even if a rootkit has been installed
on the system. There are three important questions that
come up when assessing the validity of our approach:

• Why repair rather than prevent?
The complexity of computer systems continues to in-
crease. As the complexity increases, it becomes more



difficult to prevent software or human errors that lead
to system compromises. It may not ever be possible to
completely prevent system compromises, so we need
to explore methods for dealing with system compro-
mises.

• Why repair rather than reinstall?
In some instances it may be economically more effi-
cient to repair part of a system than to reinstall the
entire system. If the repair can be automated, then
advantages may include minimizing down time, min-
imizing compromise damage, and minimizing admin-
istrative overhead.

• Why should methods other than reinstallation be ex-
plored?
It is commonly accepted that once a system has been
compromised there is only one solution: wipe the sys-
tem clean and perform a fresh install. We think that
alternative methods should be explored in order to de-
termine if other methods can offer advantages over
complete reinstallation.

3. Design Principles and Architecture

We propose a repair agent that exists as part of a pro-
duction system. We limit the design of the agent to two
types of production computer systems: servers and clusters
of workstations. Given these two types of production sys-
tems, we present five design principles for designing the re-
pair agent. These principles are simplicity, isolation, trust,
visibility, and adaptation.

1. Simplicity – The repair agent must be designed to be
as simple as possible. As the repair agent grows in
complexity, it is difficult to attest that the agent itself
is correct.

2. Isolation – The repair agent must be isolated from the
production operating system. It must not be possible
to alter, disable, or otherwise bypass the self-repairing
system.

3. Trust – The repair agent must be trusted. There should
be assurance that the agent is correct and operates as
expected.

4. Visibility – The system must have complete visibility
of the production system. A system compromise may
alter any state within the system, so the repair agent
must be capable of restoring any state to a trusted
state.

5. Adaptation – The repair agent must consume minimal
resources when the production system is under normal

Figure 1. Overview of architecture

operation. When an attack occurs, the repair agent can
consume as much of the computer system’s resources
as necessary in order to repair any damage caused by
the attack.

Building on these five principles we describe a system
architecture that is capable of autonomous self-repair. Fig-
ure 1 shows an overview of the self-repairing architecture.
The core mechanism in the architecture is TIKE. There are
many architectures for TIKE, and Figure 1 shows one ap-
proach, which is a virtual machine approach. The virtual
machine approach attempts to address the five design prin-
ciples. However, the virtual machine approach may be too
complex and may tax system performance beyond the nec-
essary level. Other architectures need to be explored such
as a microkernel approach or a hardware approach.

Building on this core mechanism, the architecture con-
sists of a scheduler that couples an intrusion detection sys-
tem with a self-repairing mechanism. A discussion of the
operation is described below, followed by the details of the
different components of the architecture.

3.1. System Operation

The design of our proposed self-healing system requires
initial setup prior to bringing the system online. First, the
repair agent is installed on the computer system. Then,
the production operating system is installed on the system.
Next, the repair agent establishes a known good baseline
for the production system and initializes its various compo-
nents including the scheduler, the intrusion detection sys-
tem (IDS), the self-repair mechanism, and the maintainer.
Now the system can be brought online, and any legitimate
updates to the system will be corroborated with the main-
tainer.



Figure 2. Architecture of repair agent

When the power is turned on, the repair agent takes con-
trol of the computer and initializes itself. After the repair
agent has been initialized, it verifies the integrity of the pro-
duction system and then begins booting it. After the pro-
duction system boots, the repair agent enters into its cyclic
algorithm to ensure stability and integrity of the system.
First the system is put into mode one; the scheduler grants
a given number of CPU cycles to the production system.
After those CPU cycles are exhausted, the scheduler puts
the system into mode two. In mode two, the IDS checks
the validity of the system and the maintainer checks for
legitimate updates to the system. If a compromise is de-
tected, the scheduler puts the system into mode three. The
self-healing mechanism repairs the system and then hands
control back to the scheduler, which puts the system back
into mode one. If no compromise is detected, the scheduler
puts the system back to mode one.

3.2. Trusted Immutable Kernel Extension

The core mechanism for the repair agent is TIKE. The
repair agent resides within TIKE. TIKE is an enabling ar-
chitecture that serves as a safe-haven for intrusion detection
and self-repair [3].

3.3. Repair Agent

The mechanism that automatically repairs compromised
systems is the repair agent. The repair agent consists of a
scheduler, an IDS, a self-repairing mechanism, and a main-
tainer as seen in Figure 2.

3.3.1. Scheduler

The scheduler sits at the center of the repair agent. It
controls when and which components run on the CPU. To
enable an adaptive repair agent, the scheduler exports an
application programming interface (API) to increase or de-
crease priority to the various components. The IDS is re-
sponsible for maintaining the adaptive nature of the repair
agent. If intrusions are detected, the system alert level is in-
creased. If intrusions are not detected for a period of time,
the system alert level is decreased. The production system
has no visibility of the scheduler.

3.3.2. IDS

The IDS is responsible for scanning the production sys-
tem for compromises. If a compromise has occurred, the
IDS builds a report and sends it to the self-repair mech-
anism through the condition policy rules (CPR) database.
The CPR database contains the rules that determine what
action the self-repair mechanism will take based on the
given condition. The IDS is responsible for monitoring
three areas of state: memory, file system, and other. Mem-
ory monitoring includes processes, open ports, kernel ex-
ecution code, and so forth. The file system includes the
files on the hard disk. Other state includes such things as
external hardware, CPU registers, and so forth.

3.3.3. Self-Repairing Mechanism

The self-repairing mechanism is a simple component in
the architecture. It operates on compromise events and per-
forms any action necessary to repair the compromise event
based on the CPR. The self-repairing mechanism is not
scheduled unless there are outstanding compromise events
that need to be serviced.

3.3.4. Maintainer

The maintainer is responsible for keeping a copy of the
known good system state up to date. More specifically, the
maintainer maintains the trusted hash table. If the system
state changes due to an upgrade, then the maintainer will
update the corresponding hash entry in the trusted hash ta-
ble.

4. Further Approach Details

There are a number of details that need to be further
explored. These include:

• System Validity (Attestation/Hashing/Reattestation)
Our approach to determining system validity is based
on hashing and attestation. If a system is compro-



mised and the repair agent repairs the system, we call
this reattestation.

• State (Memory/File System/Other)
The three types of state that the repair agent is re-
sponsible for monitoring are the memory, the file sys-
tem(s), and any other type of state.

• Root Access
Even if the attacker gains root access to the production
operating system, the repair agent should remain inac-
cessible. We use a virtual machine approach to meet
this need.

• Originating Entry Point and Patch
King and Chen introduced a framework for backtrack-
ing intrusions called BackTracker in [4]. BackTracker
is capable of finding the entry point of an attack. Their
work may be applicable in our system in order to find
the originating entry point and prevent further attacks.

• Adaptation and Performance
The system should adapt to increasing threats from the
attacker, but when the threat level is low, the system
should have high performance.

• Denial of Service
The repair agent should minimize the denial of service
experienced by the user after a system compromise
has occurred.

5. Approach Limitations

There are many limitations and challenges to our ap-
proach that must be addressed. One of the biggest chal-
lenges is how to recognize that a system has been compro-
mised. Intrusion detection is known to suffer from false
positives and false negatives. Our approach moves toward
meeting this challenge by having signatures for known
good state with attestation and hashing as opposed to re-
lying on signatures for known bad state.

Two limitations of our approach that need to be ad-
dresses are the physical access threat and data compromise.
Our assumptions assume the attacker will be attacking from
a remote location. However, if the attacker has physical ac-
cess to the box, he or she will be able to bypass our system.
Our approach could be enhanced and moved towards pro-
tection against physical access by implementing the TIKE
architecture in hardware. The problem of data compro-
mise is that once an attacker has compromised a system,
he or she may be able to gain access to sensitive data. Our
approach does not solve this problem completely, but we
think that the system will be able to minimize the amount

of damage done by automatically discovering the compro-
mise and taking action rather than relying on manual meth-
ods.

There are a few other limitations to our approach. We
have described a system in which everything should be
attested by a trusted party. In theory the mechanism is
sound, but in reality it may be challenging. Another point
to address is that some performance will lost; however, the
trade-off in performance may be acceptable given the in-
creased security. Finally, one assumption that our approach
makes is that the repair agent itself will not be compro-
mised. This is an important assumption as the entire system
relies upon it. We base this assumption on the premise that
the repair agent will be much less complex than the oper-
ating system it is monitoring, and so it should be easier to
verify the correctness of a small repair agent than an entire
operating system.

6. Conclusions

We have discussed an approach to building systems
that are capable of automatically recovering from a sys-
tem compromise. The feasibility of building such systems
is difficult to determine. We do not think we have yet cov-
ered all aspects for the requirements of such a system, but
our approach is a step in that direction. Since our computer
systems continue to increase in complexity and security is
becoming more important, we think that approaches to re-
coverable systems should continue to be explored.

We have built part of the system described in our work.
Future work will include adding more to our prototype to
better understand the feasibility of self-healing systems.
We will also test our prototype on the Georgia Tech hon-
eynet in the form of self-healing honeypots. Based on our
experience gained, we will then refine, add to, and draw
more conclusions from our approach.

References

[1] J. G. Levine, J. B. Grizzard, and H. L. Owen, “A methodol-
ogy to characterize kernel level rootkit exploits that overwrite
the system call table,” in Proceedings of IEEE SoutheastCon.
IEEE, March 2004, pp. 25–31.

[2] (2004, June) Georgia Tech honeynet research project.
http://users.ece.gatech.edu/∼owen/Research/HoneyNet/
HoneyNet home.htm.

[3] J. B. Grizzard, E. R. Dodson, G. J. Conti, J. G. Levine, and
H. L. Owen, “Towards a trusted immutable kernel exten-
sion (TIKE) for self-healing systems: a virtual machine ap-
proach,” in Proceedings of Fifth IEEE Information Assurance
Workshop. IEEE, June 2004, pp. 444–446.

[4] S. T. King and P. M. Chen, “Backtracking intrusions,” in Pro-
ceedings of the nineteenth ACM symposium on Operating sys-
tems principles. ACM Press, 2003, pp. 223–236.


