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Abstract—

We conduct a flow based comparison of honeynet traffic,
representing malicious traffic, and NETI@home traffic, rep-
resenting typical end user traffic. We present a cumulative
distribution function of the number of packets for a TCP
flow and learn that a large portion of these flows in both
datasets are failed and potentially malicious connection at-
tempts. Next, we look at a histogram of TCP port activity
over large time scales to gain insight into port scanning and
worm activity. One key observation is that new worms can
linger on for more than a year after the initial release date.
Finally, we look at activity relative to the IP address space
and observe that the sources of malicious traffic are spread
across the allocated range.

I. Introduction

The Internet has grown from the small ARPANET to an
unfathomably large network. As with any new technology,
the Internet has grown from its infancy to a stage where
security concerns become a considerable problem. Today’s
Internet is plagued with a plethora of worms, viruses, mal-
ware, spam, and otherwise malicious traffic. In this pa-
per, we make observations about end user Internet activity
by comparing honeynet traffic and NETI@home traffic in
order to better understand the security problems of the
Internet.

Our strategy for understanding the malicious Internet
traffic is a flow based analysis of several years of honeynet
data and NETI@home data. We study a number of metrics
visually over large timescales and plot both the honeynet
dataset and the NETI@home dataset and then compare
the results. Some interesting points include flow activity
across the IP address space, port scan activity, new and
lingering worm traffic, as well as other observations. Below
we provide some background information on the datasets
used.

A. NETI@home

The NETI@home project was started to collect end user
statistics from hosts on the Internet. These measurements
are gathered using an open-source software package that
end users can download from the NETI@home website [1].

The software package has been designed to run on a num-
ber of platforms in order to reach as many different users
as possible. To collect data, Internet users must volunteer
to run the software package on their end hosts. Once the
package is installed, the NETI@home client will collect net-
work statistics from the end host and periodically send a
report back to the NETI@home server.

The NETI@home project collects statistics on the TCP,
UDP, ICMP, and IGMP protocols. Users can select a pri-
vacy level of high, medium, or low, which determines what
portions, if any, of the IP addresses are recorded in each
flow. Some of the analysis presented in this paper requires
using only low or medium privacy statistics and may skew
the results slightly, but we feel that our user base is large
enough that such skewing is minimal.

The NETI@home dataset we are analyzing was collected
from June 1, 2004 to February 28, 2005 and consists of re-
ports from at least 500 uniquely identifiable users. There
are approximately 31 million TCP flows and 33 million
UDP flows in this dataset, constituting 65 gigabytes of
transferred network traffic. The remaining flows consist of
600 thousand ICMP flows and 250 thousand IGMP flows.

B. Georgia Tech Honeynet

A honeynet is a network of resources whose value lies
in the illicit use of those resources. All network traffic to
and from a honeynet is suspicious, but a small amount of
traffic may be legitimate. However, most of the traffic on
a honeynet is malicious in nature.

The Georgia Tech Honeynet Project was launched in the
summer of 2002 and immediately began collecting data [2].
The dataset we are using consists of nearly three years of
honeynet traffic with very few service interruption points
for maintenance and upgrades. All network traffic to and
from the honeynet has been logged and archived, including
the traffic between the honeypots.

To better understand the conclusions we draw from this
data, it is important to understand the network on which
this honeynet has been deployed. There are over 15,000
students enrolled at Georgia Tech and approximately 5,000
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staff and faculty employed. The supporting network con-
sists of more than 40,000 networked systems all within
Georgia Tech’s “.edu” address space. The honeynet has
been deployed within this “.edu” address space and is ac-
cessible from internal machines within the Georgia Tech
address range as well as external machines.

The honeynet dataset we are analyzing was collected
from August 19, 2002 to February 28, 2005 and consists
of reports from 38 unique IP addresses. There are approx-
imately 2 million TCP flows and 350 thousand UDP flows
constituting 7 gigabytes of transferred network traffic. The
remaining flows consist of 40 thousand ICMP flows and no
IGMP flows. During this time period there have been on
the order of ten compromises.

C. Observing Malicious Traffic

In this paper, we visually compare the network flows of
a honeynet against the network flows in the NETI@home
data. In particular, we make observations to try and an-
swer these three questions:

• What are some of the characteristics of the malicious
traffic observed on the Internet?
• How much malicious traffic is seen by end users on the
Internet?
• Are there identifiable sources of malicious traffic on the
Internet?

The remainder of the paper is organized as follows. First,
we will describe some background information on our meth-
ods for analyzing the data. Next, we present our findings
and compare and contrast the results from the honeynet
dataset and the NETI@home dataset. Finally, we discuss
some related work and present our conclusions and areas
of future work.

II. Network Flow Analysis

In order to compare the NETI@home dataset with the
honeynet dataset, we ran a customized version of the
NETI@home client on our honeynet data. This yielded
flow based statistics of the honeynet data that is in the
same format as the NETI@home statistics and is suitable
for comparison. In this section, we describe some of the
statistics that are provided by the NETI@home client.

The NETI@home client collects statistics for four com-
mon transport layer protocols: TCP, UDP, ICMP, and
IGMP. Much of our analysis focuses on TCP flows since
they make up the majority of the traffic seen in our
datasets. However, some data from UDP, ICMP, and
IGMP are also presented in our results.

The analysis technique is centered around the concept of
a bidirectional flow, based on the commonly used 5-tuple,
which consists of the source and destination IP addresses,
source and destination ports, and the transport layer proto-
col. Statistics gathered for each TCP flow include various
time measurements, the number of packets sent and re-

ceived, the source and destination parameters, failure flags,
window size measurements, and various other information.
Similar statistics are gathered for the flows that are of the
other types of transport layer protocols. A full discussion
of the statistics gathered can be found in [3].

Each flow has a local IP and port number and a remote
IP and port number. Local refers to the host on which
the client is running and collecting statistics from. Re-
mote refers to the other host in the flow. Therefore, if a
NETI@home user with IP x makes a web request to a given
IP y, then x would be the local IP and y would be the re-
mote IP. To further clarify, if the same NETI@home user
was scanned by IP z, then x would still be the local IP and
z would be the remote IP.

There are several sources of bias in our datasets that
may skew our results and are worth mentioning. First, an
insignificant number of NETI@home users had their clocks
misconfigured so we did not include them in the results.
Clock synchronization in general is a source of bias. Sec-
ond, we did not include all IP results from NETI@home
users when their privacy was set to high because their IP
addresses are unknown. Third, the honeynet dataset is
known to be complete; however, the NETI@home dataset
relies on the end users to run the NETI@home client to
monitor their systems and so may have some incomplete
results. Fourth, the NETI@home users must volunteer to
run the client, so the data are not a truly random sample
of Internet end users. Finally, the honeypots are all on
the same network, whereas NETI@home users are spread
throughout the Internet.

After collecting the flow statistics for both datasets, we
created a framework to analyze the data. This framework
allowed us to plot various graphs for both datasets for com-
parison. Below, we present these graphs and discuss our
observations.

III. Data Observations

In order to aid in understanding what makes up the ma-
jority of the malicious traffic on the Internet we have plot-
ted various metrics for both the honeynet dataset and the
NETI@home dataset. The NETI@home dataset represents
a mixture of both legitimate/good traffic as well as mali-
cious traffic. The honeynet dataset represents almost en-
tirely malicious traffic. Comparing and contrasting these
results can initiate a better understanding of the malicious
traffic seen on the Internet.

A. Number of Packets Per Flow

In our first figure we graphed the cumulative distribu-
tion function (CDF) of the number of packets for all TCP
flows for each dataset. The results are shown in Figure 1.
First observe the honeynet curve. One can see two distinct
inflection points for packet counts equal to one and two.
TCP flows which consist of just one packet most likely con-
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Fig. 1. Cumulative distribution function of the number of packets per TCP flow

tain one SYN packet. It is possible to have a single packet
flow that is not a SYN packet. For instance, a RST or
SYN/ACK packet could be received from a host that re-
ceived a spoofed connection attempt. We did not observe
many flows of this nature.

TCP flows which consist of two packets most likely con-
sist of one SYN and one RST packet or one SYN and
one SYN/ACK packet with no final ACK to complete the
three–way handshake. Again, there are other combinations
of TCP flows consisting of just two packets, but we have
not observed many of these combinations. Any TCP flow
consisting of two or less packets is a failed connection. On
a honeynet, we consider these failed connections to be ma-
licious probes. Therefore, on our honeynet dataset about
87% of all TCP flows can be considered to be probes.

We can contrast the NETI@home CDF with the hon-
eynet CDF and see that about 73% of all TCP flows can be
considered failed connections. In the NETI@home dataset,
not all of these failed connections are necessarily malicious
probe packets as they may be legitimately failed connec-
tions. However, it is interesting to note that in terms of
number of packets per flow the majority of observed TCP
flows for end users are either probes or failed connections.

B. TCP Port Histogram

To better understand what ports and services malicious
flows are targeting, we have generated a TCP Port His-
togram over time for both the honeynet dataset as seen in
Figure 2 and the NETI@home dataset as seen in Figure 3.
Each row of points represents one day. The width of the
rows span the local TCP ports from 0 to 1024, which are
the well known ports [4]. The following formula was used
to create the graphs, where i is the intensity value for a
given point in a given row:

i =

{
0 if c = 0

0.75 ·
(

c
cmax

)0.45

+ 0.25 otherwise
(1)

The maximum number of packets destined to a certain
port on one day (i.e. one row in the figure) is denoted cmax.
A port with a packet count c is then visualized with inten-
sity i according to above formula. If c is zero, the intensity
is also set to zero (black). Otherwise, the intensity is cho-
sen to be a value between 25% gray (i = 0.25) to white
(i = 1.0, for the port where c = cmax). The exponent is
used to boost dark pixels to make them more visible. We
choose to represent no activity with dark regions because
it provides better contrast for the faint areas of activity.

There are a number of observations to be made from
these graphs. Two important characteristics of the figures
to observe are the horizontal lines and the vertical lines.
First, the horizontal lines represent port scans. Port scans
are often malicious in nature as an attacker will generally
use a port scan against a target in order to determine that
target’s weaknesses. In the honeynet data, a number of
port scans can be seen over time, but the NETI@home
dataset shows a significantly denser number of port scans
seen over time. This appears to be intuitive as there are
an order of magnitude more NETI@home users, which
are distributed across the Internet both topologically and
geographically, than there are honeypots in our dataset.
Some factors that would decrease the number of port scans
seen by NETI@home end users include firewalls, NATs, or
other similar configurations. Even with these factors, some
NETI@home users are seeing similar port scans as seen on
our honeynet.

Another interesting observation is that there are a num-
ber of different types of scans seen. At least four different
port scans are easily distinguished visually in the honeynet
data as denoted by the letters A−D, and similar scans are
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Fig. 2. Honeynet TCP Port Histogram

observed in the NETI@home data. The most naive port
scan will scan all ports (B). The more sophisticated port
scans will skip ports that are of little interest (A, C, and
D). There are a number of widely available port scanning
tools, which offer various options for the scanning algo-
rithm [5,6].

One interesting difference seen in the horizontal lines in
the NETI@home dataset are the stair step lines from ap-
proximately port 512 through 1024. Since the user that
reported these flows was within the Georgia Tech network
and used a low privacy level, we were able to determine
what caused the stair step lines. An administrative ma-
chine within the Georgia Tech network was scanning ports
512 through 1024 over the course of several days. The algo-
rithm consists of dividing the ports into a number of ranges

and scanning one range each day. The source of the scan-
ning was a machine used to help secure the network and so
was altruistic. Therefore, we do not consider these scans
to be malicious in nature.

The second interesting aspect to observe in these graphs
are the vertical lines. The vertical lines represent ports that
have continual traffic over large time scales. Looking at
the honeynet graph from left to right, the most prominent
TCP ports with continual traffic are 22 (ssh), 80 (www),
135 (Microsoft Windows Service), 139 (Microsoft Windows
Service), and 445 (Microsoft Windows Service). Most of
these ports have been a target of one or more worms in the
past in addition to legitimate traffic.

There are a number of other vertical lines that are not as
prominent in the honeynet dataset as seen in Figure 2. The
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vertical line denoted by ‘1’ is LDAP traffic and was only
seen for a short period of time. The line denoted by ‘2’
represents traffic seen from the real time service protocol
worm. The traffic at ‘2’ is particularly interesting in the
honeynet dataset. One can notice a bright burst of traf-
fic starting on the worm release date that continues with
intensity over the course of the next several days. After a
number of days, the worm traffic slowly fades out as the
infected machines are repaired. However, trailing effects of
the worm can be seen from the point of release until the
end of the dataset, which is over the course of more than
a year. Therefore, we see lingering worm traffic exists on
the Internet for long periods of time after the initial release
date.

The line denoted by ‘3’ represents traffic seen from the
blaster worm as seen in Figure 2. This line also continues
on for a long period of time, although its characteristics
are not as distinguishable as the real time service proto-
col worm. In the honeynet data, it is not clear why traffic
is seen at the line denoted by ‘4’ at port 901. This may
be traffic targeting an old Trojan port, RealSecure’s man-
agement port, or Samba/SWAT on RedHat Linux based
boxes. It is interesting to note that these trends seen in
the honeynet data are repeated in the NETI@home data
in addition to the legitimate traffic as seen in Figure 3.
Although, it is difficult to distinguish between legitimate
traffic and worm traffic in the NETI@home dataset.

C. IP Address Space

The graphs in Figure 4 show where the traffic is coming
from or going to within the entire IP address space. The IP
address is divided into 256 buckets based on the first byte
of the IP address. Figure 4(a) shows the honeynet graph.
It is clear that certain portions of the address space have
seen zero activity on the honeynet. These portions cor-
respond with unallocated addresses as listed in the whois

database. Given that there are no flows from most of these
spaces to the honeynet, we conclude that there are not
many spoofed IP packets coming from unallocated IPs to
our honeynet. Further, either the number of packets with
spoofed IP addresses coming to our honeynet is low or they
are intelligently designed.

The NETI@home dataset has an additional baseline of
traffic seen across most of the address range as seen in Fig-
ure 4(b). Further investigation found that this baseline is
caused by one or more NETI@home users sending out a
large number of TCP flows to TCP port 445 over a short
period of time. We are unsure how many users were re-
porting these results due to privacy settings. Figure 4(d)
shows the number of flows to TCP port 445 versus the IP
address space. There is clearly a horizontal line across the
majority of the IP address space, which suggests that the
NETI@home user or users were randomly scanning the IP
address space on TCP port 445. The nature of this scan-
ning may have be malicious in nature. For example, the
user may have been infected with a worm as there have
been worms that target TCP port 445. However, we can-
not conclude for certain that the traffic was malicious in
nature.

In Figure 4(d), there is a small increase in traffic at
bucket number 10. This is probably due to local 445 traf-
fic on private 10.0.0.0/8 networks. Similarly, there is an
increase in traffic at bucket number 192. This increase
would be due to local 445 traffic on private 192.168.0.0/16
networks. The sharp drop in traffic at bucket number 127
is due to the fact that the 127.0.0.0/8 network is the dedi-
cated localhost network. Finally, the upper ranges of the IP
address space did not see any scans. These ranges contain
multicast, experimental, and other types of allocations.

To better compare the NETI@home data with the hon-
eynet data, we graphed the NETI@home dataset filtering
out traffic to TCP port 445 as seen in Figure 4(c). Com-
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Fig. 4. IP address space distribution by number of flows

paring Figures 4(a) and 4(c), one can notice a striking sim-
ilarity between the NETI@home data and the honeynet
data. Some differences in the NETI@home data include
traffic to the multicast range and some traffic in the un-
allocated ranges. However, visually the two graphs have
notably similar shapes.

Based on our observations of the IP traffic seen relative
to IP address space, we note a possible algorithm for detect-
ing suspicious machines. In previous work, we showed that
a honeynet can be used to find compromised machines on
large enterprise networks by marking any machine on the
enterprise that attempts to connect to the honeynet as sus-
picious [7]. An extension that we draw from these graphs
is that any machine attempting to connect to an unallo-
cated IP address should be considered suspicious and may
be compromised.

A graph of the remote IP versus local port for both
datasets can be seen in Figure 5. Again, we only plot the
well known TCP ports. In these graphs, one can see that
remote IPs that appear in the flows are spread across the
allocated IP spectrum, and again there is little traffic in the
unallocated ranges, even in the NETI@home data. Based

on these graphs, we observe that scans come from across
the entire allocated IP address space.

IV. Related Work

Much work has been accomplished on measuring Inter-
net statistics. The Cooperative Association for Internet
Data Analysis (CAIDA) was founded in order to provide
“tools and analyses promoting the engineering and mainte-
nance of a robust, scalable global Internet infrastructure.”
[8]. CAIDA examines all aspects of the Internet including
topology, routing, performance, and security. Much of the
CAIDA measurements and results focus on macro–Internet
observations while we present micro–Internet observations
as seen by end hosts.

There has also been much research on Internet worms.
Work has been accomplished on characterizing and looking
at the trends of various worms [9, 10]. Further, a detailed
study of the spread time, algorithms, and damage caused
by recent worms has been conducted. For example, Shan-
non et. al. give an in depth look at the Witty worm in [11],
and Moore et. al. give an in depth look at the Slammer
worm in [12]. We see both of these worms in our dataset
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Fig. 5. Remote IP address and contacted local TCP port

and data shows that their lingering effects are still active.
Various schemes for measuring Internet activity have

been designed and implemented. CAIDA uses a network
telescope, which consists of a full /8 network in order to
observe worms, DoS attacks, network scanning, and other
malicious activity [13]. SANS recently started the Internet
Storm Center (ISC) in order to provide users and organi-
zations with warnings against possible new threats seen on
the Internet [14]. The NETI@home dataset focuses on end
user statistics, while the honeynet dataset can be consid-
ered similar to the network telescope data, with the excep-
tion that live hosts will respond to probes.

V. Conclusions and Future Work

We used a number of methods to analyze network flows
over time for NETI@home data and honeynet data. In
both datasets, the majority of the TCP flows were failed
connections. In the honeynet dataset, these flows were ma-
licious in nature. The NETI@home dataset has a smaller
percentage of TCP flows that were failed connections, and
these flows were not necessarily malicious in nature.

The majority of the traffic seen in the honeynet dataset
consists of port scans and worms. We observed that the
outbreak of a new worm will linger on for more than a year
after the release date. Similar patterns were observed in
the NETI@home data, although it is difficult to distinguish
between malicious and legitimate traffic.

We also found that port scanning was seen by
NETI@home users and honeynet machines regularly. By
using our technique of a TCP port histogram, we were able
to observe an altruistic port scan of NETI@home users
that slowly scanned the ports over the course of several
days. Some of the malicious port scanning patterns ob-
served in the honeynet dataset were also observed in the
NETI@home dataset.

We found that both datasets showed similar flow distri-

butions across the IP address space. In the NETI@home
dataset, however, a small number of users were scanning
most of IP address space in a random fashion on a TCP
port that is the target of recent worms. Finally, for both
datasets, the source of malicious and legitimate traffic
comes from across the entire allocated IP address space.
We did not observe significant malicious traffic or legiti-
mate traffic coming from the unallocated IP address space.

There are a number of future directions to research. We
intend to do a formal statistical correlation between the
honeynet data and the NETI@home data to draw more
definitive conclusions. There are numerous other network
statistics that can be compared such as TTL values, win-
dow sizes, checksum errors, and so forth. The analysis of
these areas of research will be conducted in future work.
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