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Abstract— Unwanted and malicious messages dominate Email
traffic and pose a great threat to the utility of email commu-
nications. Reputation systems have been getting momentum as
the solution. Such systems extract Email senders behavior data
based on global sending distribution, analyze them and assign
a value of trust to each IP address sending email messages. We
build two models for the classification purpose. One is based
on Support Vector Machines(SVM) and the other is Random
Forests(RF). Experimental results show that either classifier is
effective. RF is slightly more accurate, but more expensive in
terms of both time and space. SVM produces similar accuracy
in a much faster manner if given modeling parameters. These
classifiers can contribute to a reputation system as one source of
analysis and increase its accuracy.

I. INTRODUCTION

When the anti-spam war started in mid 90s, it mainly relied
on detecting common words present in spam and manually
blacklisting spam IP addresses. Historically, there has been
much controversy around blacklists because of the subjectivity
of getting placed on the list and the difficulty of being
removed. Whitelists have been developed that maintain lists
of legitimate senders. A problem with whitelists and blacklists
is that they left a sizable set of senders in the middle of
the spectrum that were not classified. This is because there
was not enough credible information or feedback to make a
binary decision about the sender. As spammers started using
fast changing botnets, randomizing and obfuscating content in
their messages, those technologies quickly became ineffective.
Recently we begin to see more adversarial intelligence and
data mining from spammers. Spammers continue to accumu-
late vast data stores on vulnerable systems and individuals. To
address this problem, reputation systems for email became a
topic of interest in anti-spam research around 2003.

In general, a reputation system collects and aggregates
feedback from participants to provide incentives for future co-
operation. Email reputation systems aim to assign a reputation
value to every host that currently sends email or may send
email in the future. Typically, an email reputation system uses
the IP address of a computer as the identity and a reputation
is built for that identity.

An example for such a reputation system is Secure Com-
puting’s TrustedSource [1]. TrustedSource operates on a wide
range of data sources including proprietary and public data.
The latter includes public information obtained from DNS

records, WHOIS data, or Real-time Blackhole Lists (RBLs).
The proprietary data is gathered from over 5000 sensors placed
at email gateways global wide. It gives a unique view into
global enterprise email patterns. A sensor located in the re-
ceiver mail gateway sends queries to TrustedSource about the
received messages. Based on the needs of email administrator,
the sensor is able to share different levels of data and query
for reputation from different aspects. Currently, TrustedSource
can calculate a reputation value for the IP address a message
originated from, for URLs in the message, and for message
fingerprints.

This paper is focused on the analysis of the performance of
two commonly used data mining techniques: Support Vector
Machines (SVM) [2] and Random Forests (RF) [3]. Inputs to
both models are IP sending behavior collected from sensors
in real-time. They return IPs reputation scores as outputs. The
effectiveness and the efficiency of classification modeling are
then empirically analyzed. As far as we know, this is the first
time a comparison study is conducted between these two state-
of-the-art classification methods on a real-world information
security problem.

The rest of the paper is organized as follows. Section II pro-
vides some background regarding RBLs and reputation-based
filtering approaches in the email messaging space. Behavioral
data of email senders is described in Section III. Brief reviews
of supervised binary classification are in Section IV. Section
V empirically compares classification performance in terms
of effectiveness and efficiency. A Return of Investment (ROI)
analysis is given in Section VI to measure the benefits of this
research. Finally, Section VII concludes the paper.

II. BACKGROUND

An early approach for efficient filtering of unwanted spam
email traffic is the use of RBLs. An RBL is a list of IPs (or
netblocks) that are not allowed to deliver email messages to
the mail server incorporating them.

Typically, RBLs can be queried over the DNS protocol.
When a host on the Internet tries to send a message to an
email server, the email server can query an RBL to check
whether the IP of the sending host is listed. If the IP is listed
then the sending host is a known source of malicious traffic.
Alternatively, this information combined with a local analysis
result can be used to render a final decision.
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Fig. 1. Data gathered from query.

RBLs generally gather malicious senders information from
spam messages delivered to spamtrap email addresses, manual
listings, or user feedback. There are several drawbacks to this
approach. To be automatically listed, a particular spam run
needs to target a spamtrap email address. All messages that
have been delivered beforehand cannot be stopped. Manual
listings and user feedback require a human in the loop and
are inherently non-automatic. This results in a slow reaction
time. It is especially problematic to catch zombie machines
with only a few hours of sending activity.

One approach to counter these shortcomings is to automate
the process with more sources of feedback as inputs. For exam-
ple, the real-time queries sent over DNS can yield additional
insight. Fig. 1 shows how data can be collected in this manner.
A sending host with IP address Q tries to send a message to
a receiving email server. The email server queries an RBL for
the IP address of the sending host (Q). We therefore call it the
queried IP. The query is relayed over DNS to an RBL server.
The server sees the query packet coming from the IP address
S of the DNS server. S is called the source IP. In addition,
time T when the query was received is stored. This results in
a tuple < Q,S, T > for each query.

III. SENSOR DISTRIBUTION FEATURE EXTRACTION

In previous work, we verified that classification on features
extracted from < Q,S, T > records is effective for spam
senders detection [4]. In this paper, we investigate whether
global message sending distribution is informative for spam
senders detection. Ramachandran et al. describe a similar
feature extraction idea from email senders behavior [5]. Their
work focuses on unsupervised clustering of IP addresses
based on the set of target domains to which an IP attempts
to send messages. Their data are based on traces retrieved
from a mail hosting company hosting about 115 domains. In
contrast, our work is based on data retrieved from large-scale
sensor distribution data. They are collected by the Trusted-
Source reputation system globally. This includes over 5000
TrustedSource-enabled sensors worldwide. Also, our focus is
to use supervised machine learning techniques on this data.
One advantage of supervised classification is that we can
precisely forecast the accuracy of a model before it is released
into a production system by Cross Validation (CV) or Out-of-
Bag (OB) estimation. We can even control the aggressiveness
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Fig. 2. Message sending distribution across receivers.

of spam senders detection by conducting a Receiver Operating
Characteristic (ROC) analysis.

Fig. 2 explains the idea of sensor (or receiver) distribution.
There are two senders and three receivers. Sender 1 and Sender
2 have different sending distribution patterns. Sender 1 sends
approximately the same amount of messages to each of the
receivers while Sender 2 mainly sends messages to Receiver
1. Assume Receiver 1 is in the US, Receiver 2 in Europe, and
Receiver 3 in Asia, and they all represent different businesses.
Intuitively Sender 2 appears more legitimate if it is mainly
doing business in the US while Sender 1 is more likely to be a
spammer because legitmate businesses tend to have a stronger
geographical bias in the traffic distribution while spammers hit
email addresses more randomly. In addition, the set of targeted
recipients can be assumed to be more stable among multiple
IPs operated by the same spammer [5]. This makes it attractive
to investigate this distribution as an input feature to determine
the legitimacy of a sender.

IV. SUPERVISED BINARY CLASSIFICATION

In this section, we provide background knowledge on the
classification techniques used, how they are deployed, and how
the results can be analyzed and compared.

A. Preliminary

Given a training dataset Tr with n samples
(x1, y1), (x2, y2), ..., (xn, yn), where xi is a feature vector
in a d-dimensional feature space Rd and yi ∈ {−1,+1}
is the corresponding class label, 1 ≤ i ≤ n, the task is to
find a classifier with a decision function f(x, θ) such that
y = f(x, θ), where y is the class label for x, θ is a vector of
unknown parameters in the function.

B. Support Vector Machines

SVM is a learning system based on recent advances in
statistical learning theory [2]. Geometrically, the SVM mod-
eling algorithm finds an optimal hyperplane with the maximal
margin to separate two classes, which requires to solve the
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following optimization problem.

maximize
n∑

i=1

αi − 1
2

n∑
i,j=1

αiαjyiyjK(xi,xj)

subject to (1)
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, ...n

where αi is the weight assigned to the training sample xi.
If αi > 0, xi is called a support vector. C is a “regulation
parameter” used to trade-off the training accuracy and the
model complexity so that a superior generalization capability
can be achieved. K is a kernel function, which is used to
measure the similarity between two samples. A popular RBF
kernel function, as shown in (2), is used in this research.

K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0 (2)

After the weights are determined, a test sample x is classi-
fied by

y = sign

(
n∑

i=1

αiyiK(xi,x)

)
, (3)

sign(a) =
{

+1, if a > 0
−1, otherwise

To determine the values of < γ,C >, a Cross Validation
(CV) process is usually conducted on the training dataset.
CV is also used to estimate the generalization capability on
new samples that are not in the training dataset. A k-fold
CV randomly splits the training dataset into k approximately
equal-sized subsets, leaves out one subset, builds a classifier
on the remaining samples, and then evaluates classification
performance on the unused subset. This process is repeated k
times for each subset to obtain the CV performance over the
whole training dataset. If the training dataset is large, a small
subset can be used for CV to decrease computing costs.

C. Random Forests

RF is a tree based classifiers combination algorithm [3].
It utilizes a bootstrapping method to randomly generate an
In-Bag (IB) subset Tr IB and an Out-of-Bag (OB) subset
Tr OB from Tr. A bootstrapping process generates Tr IB
of size n′(n′ <= n) by uniformly sampling from Tr with
replacement. By sampling with replacement it is likely that
some samples are repeated in Tr IB. If n′ = n (100%
bootstrapping), with large n the set Tr IB is expected to have
63.2% samples of Tr, the rest being duplicates. The remaining
36.8% samples form Tr OB in that case. If n′ < n, less
samples are expected to be in Tr IB and more in Tr OB.
We can do bootstrapping multiple times on Tr to generate
multiple IB subsets and OB subsets.

Next, an unpruned decision tree is modeled on each in-
bag dataset. During the modeling of a decision tree, a small

fraction of input features are randomly selected to determine
the split at each node of the tree. A test sample is classified
by majority vote from the ensemble of decision trees.

The OB samples can be utilized for accuracy estimation.
For example, if we run 100 times 100% bootstrapping, a
particular sample is not used for modeling 36.8 decision
trees on average. The 36.8 decision tree predictions can be
aggregated by major-voting as the OB prediction. Finally, the
OB predictions over the whole training dataset can be used to
estimate the generalization capability on unseen new samples.

By aggregation on an ensemble of weak but low-correlation
tree classifiers, RF usually can significantly improve classifi-
cation accuracy over one single decision tree classifier that is
modeled on the original training dataset.

D. ROC analysis

Receiver Operating Characteristic (ROC) analysis and Area
under ROC curve (AUC) have been designed to evaluate
classification effectiveness/accuracy [6]. ROC and AUC can
indicate a classifier’s balance ability between its true positive
(TP) rate and its false positve (FP) rate as a function of varying
a classification threshold. An area of 1 represents a perfect
classification, while an area of 0.5 represents a worthless
model. By drawing the corresponding ROC curve, one classi-
fier’s TP rates under different FP rates can be visualized to help
the administrator to control the balance between aggressive
versus conservative spam senders detection.

SVM and RF are well known as superior classification
algorithms in a high-dimensional feature space (d > 1000)
and hence have been widely applied in many application
domains. However, as far as we know, they are seldom used
in information security domain, especially for email senders
behavioral analysis.

V. EXPERIMENTS

In this section, we present the experiments conducted and
discuss the results. All classification modeling is carried out
on a workstation with a Intel Xeon CPU at 1.86 GHz and 16
GB of memory.

A. Experiment Design

We extracted a records of about half million sending IPs
from the TrustedSource dataset. These IPs have contacted
3,158 unique sensors. Since this dataset is still huge and
contains far more spam IPs than non-spam IPs, we randomly
undersample the set of spam IPs such that the number of
spam IPs is twice the number of non-spam IPs. Table I lists
the characteristic of the dataset for modeling before and after
undersampling. We divide the dataset randomly into three
equal-sized subsets such that each subset also has a two-
to-one ratio between spam and non-spam IPs. Two subsets
are used for training and the remaining subset is used as the
testing dataset. The task is to build a classifier in this 3,158-
dimensional space to discriminate spam IPs (labeled +1) from
non-spam IPs (labeled −1).

We choose LIBSVM (available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm) for SVM modeling with
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TABLE I

SENSOR DISTRIBUTION DATA ON NOV/08/2007

original after undersampling
#sensors 3,158 3,158
#IPs 491,566 54,393
#non-spam IPs 18,131 18,131
#spam IPs 473,435 36,262

TABLE II

EFFECTIVENESS/EFFICIENCY WITH 2/3 TRAINING AND 1/3 TESTING

Method AUC-Testing Time Space
C4.5 Decision Tree 0.95714 243 mins ≈2 G
Random Forest 0.98919 339 mins ≈4 G
SVM γ = 0.125, C = 128 0.98466 91 mins ≈190 M

the RBF kernel. Because there are more spam IPs than non-
spam ones, we use a false negative (FN) cost of 1 and the
false positive (FP) cost of 2.

For SVM modeling, 5-fold CV is conducted for both param-
eter tuning and generalization capability estimation. Because
CV is time-consuming, only a subset of 10% randomly se-
lected training samples is used. As suggested by Hsu et al. [7],
a grid search heuristic is used to select the best (γ,C) param-
eters from γ = 2−15, 2−13, ..., 23 and C = 2−5, 2−3, ..., 215.
Therefore, there are 110 groups of parameters. For each group,
a 5-fold CV is conducted. The group with the highest CV AUC
value is used to build an SVM on the whole training dataset
and to predict on the testing dataset.

We choose the R randomForest package (available at
http://cran.r-project.org/src/contrib/
Descriptions/randomForest.html) for RF
modeling. 100 bootstrapping datasets are generated, on
each of which a random tree is modeled. As the dataset is
huge, 10% bootstrapping is used. For each tree modeling, 6%
of features are randomly selected to decide the best feature
for splitting at each node. Hence, each tree is a weak classifier
and correlation among trees is low. We expect bootstrapping
aggregation can boost the 100 weak tree classifiers into a
highly accurate classifier.

B. Result Analysis

The effectiveness/efficiency analysis is presented in Table II.
Notice that the modeling time includes both training time and
testing time. We use the popular C4.5 decision tree classifier
[8] as the baseline for comparison. Both RF and SVM are
much more effective than C4.5. Between them, RF is slightly
more accurate, but it is expensive in terms of both time and
space. After modeling parameters are fixed, SVM can achieve
a similarly accurate classification performance in far less time.

AUC values alone cannot justify the effectiveness. In a real-
world spam filtering system, a classifier with FP rate > 1%
is not acceptable. Fig. 3 depicts ROC curves with a cut-off
at FP rate ≤ 10% (left) and FP rate ≤ 1% (right). Once
again, these curves show that both SVM and RF are effective.

From the ROC curves, we can see that at FP rate = 0.2%,
SVM can catch 39.2% spam IPs while RF can catch 31.2%

spam IPs based on features extracted from global email pat-
terns. At FP rate = 0.3%, SVM and RF can catch 45.8% and
51.7% spam IPs, respectively. In comparison, Ramachandran
et al. reported a classification accuracy of TP rate = 10%
and FP rate = 5% based on clustering of local email data
[5]. The increased classification performance can be attributed
to both the application of supervised learning techniques and
the higher breadth of features using the TrustedSource dataset.

In TrustedSource, the sensor distribution features are com-
bined with other informative features to generate a classifier
with TP rate ≥ 90% at FP rate ≤ 0.01%. The features
incorporate additional data feeds and are out of the scope of
this paper. Examples of other potential features are discussed
in our previous work on behavioral spam filtering [4].

Also note that a classifier at the reputation-level does not
replace a solution incorporating local analysis of messages.
A reputation-based filtering solution aims at sifting out as
much traffic as possible at the connection level to decrease
the computational load for an in-depth local analysis.

VI. RETURN OF INVESTMENT ANALYSIS

Based on the email traffic seen by TrustedSource, we present
an estimation of the Return Of Investment (ROI) of the out-
lined classification techniques. With spam levels comprising
over 90% of all email by early 2008, the hardship and costs
endured by organizations and end-users due to this problem
can be immense. They are caused by 4 factors: bandwidth,
storage, processing, and productivity loss.

The bandwidth component of the overall cost of spam has
been on the increase due to the rise in image-based spam
[9]. The average size of a spam message in early 2008 is
9.7 kB. At the same time, spammers have been able to
dramatically increase the volume of spam they are able to send
on a daily basis by optimizing the performance of their mail
deployment software and utilizing greater number of zombies
to do the sending. Secure Computing has detected a 100%
increase in mail volumes in 2007 and a 65% growth in new
zombie machines in the same period. A mid-size organization
consisting of 10,000 users can now expect to receive an
average of 3 million spam messages each day, resulting in
29 GB of daily malicious traffic entering their network over
the SMTP port. Assuming a conservative price of bandwidth
of $100 per terabyte, this would cause a $1000 annual loss.

The second component of the spam cost is storage. Since
many organizations do not immediately delete but instead
quarantine identified spam due to the risk of misclassification
of legitimate email, as well as regulations, such as Sarbanes-
Oxley Act (SOX) in the United States, that demand archival
of all records, including email, for up to 7 years (not every
organization is required to be compliant with SOX and similar
regulations, but in our experience most do try to archive their
email for at least a number of years to decrease their legal lia-
bility risk). Even assuming a conservative 30% yearly growth
in spam, the amount of storage that such an organization would
need in 7 years just to keep all that spam would exceed 35
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Fig. 3. ROC analysis on Nov/08/2007 sensor distribution data.

petabytes. With a relatively inexpensive storage cost of $2 per
gigabyte, it would cost over $10 million annually.

In addition to the bandwidth and storage concerns, many
organizations have had to purchase additional hardware and
software processing capacity to cope with the sharp rise in
incoming mail volumes attributed to spam. With the average
cost of enterprise-level email security solutions being around
$10,000-$50,000, the processing concern is major component
of the overall spam cost. With most organizations purchase
additional systems every 3 years, they can expect their average
annual costs to be around $25,000.

Finally, the productivity loss associated with end-users hav-
ing to read and delete the trickle spam that inevitably comes
through their anti-spam solutions and arrives in their inbox,
as well as the legitimate emails that may be misclassified and
never received by the recipient are immeasurable.

When calculating the Return of Investment, inevitably one
has to also consider the risk of false positives. While the costs
associated with a critical email that is misidentified can be
substantial, they are much harder to calculate. If an email is
rejected while the SMTP connection to the sender is still open,
the sender will typically get an instant notification that their
message did not reach the destination and they can try other
avenues to contact their recipient, which minimizes the cost of
the false positives. If other actions are taken, such as a silent
drop or quarantine where neither the sender or receiver are
notified, the cost to organization can potentially be enormous
depending on the importance of the email.

In our implementation of classification modeling, it is able
to identify about 39.2% of all spam IPs at FP rate = 0.2%
that we detect targeting our customers across the world. With
a uniform distribution of those IPs, an organization of 10,000
users can expect an annual cost saving of up to $3.92 million
from the introduction of this classifier in the reputation system
they may be using by rejecting all connections originating
from those IPs at their mail gateways.

VII. CONCLUSION

In this paper, we introduce two state-of-the-art classification
algorithms, SVM and RF to detect malicious email servers.

These methods utilize low-informative and high-dimensional
sensor distribution data. Global sending behavior features are
extracted from simple sensor query records that do not appear
to be informative locally. We also show the classification
results produced from real global Email traffic data. As far as
we know, this is the first time a comparison study is conducted
between these two well-known classification methods on a real
world information security problem. Our study demonstrates
that these features combined with advanced classification
techniques can be reliable for spam detection. Both SVM and
RF are effective resources for building accurate classifiers.
Between them, RF is marginally more accurate but more
expensive in terms of time and space. SVM generates similar
accuracy in a much more efficient way if modeling parameters
are fixed. The resulting classifiers contribute to TrustedSource
as one source of input and prevent unwanted and malicious
messages from being delivered to email users.
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