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Abstract— Unsolicited commercial or bulk emails or emails
containing viruses pose a great threat to the utility of email
communications. A recent solution for filtering is reputation
systems that can assign a value of trust to each IP address sending
email messages. By analyzing the query patterns of each node
utilizing reputation information, reputation systems can calculate
a reputation score for each queried IP address. In this research,
we explore a behavioral classification approach based on features
extracted from such global messaging patterns. Due to the large
amount of bad senders, this classification task has to cope
with highly imbalanced data. Firstly, for each observed sender,
we calculate periodicity properties using a discrete Fourier
transform and global breadth information reflecting message
volume and recipient distribution. After that, a Granular Support
Vector Machine - Boundary Alignment algorithm (GSVM-BA) is
implemented to solve the class imbalance problem and compared
to cost sensitive learning. Lastly, we determine the performance
of support vector machine, C4.5 decision trees, naı̈ve Bayesian
decision trees, and multinomial logistic regression classifiers on
the resulting data set. The best performance is observed by using
GSVM-BA for rebalance and then using SVM for classification.

I. I NTRODUCTION

Traditional content filtering anti-spam systems can provide
highly accurate detection rates but are usually prohibitively
slow and poorly scalable to deploy in high-throughput enter-
prise and ISP environments. An early approach for efficient
filtering of unwanted spam email traffic has been the use of
real-time blacklists (RBLs). An RBL is a service containing
a list of IPs from which email servers should not accept
messages. Typically, RBLs can be queried over the DNS
protocol. Whenever a host on the Internet tries to send a
message to an email server, the email server can query an
RBL to check whether the IP of the sending host is listed.
If the IP is listed then the sending host is a known source
of malicious traffic and the receiving email server can reject
the message. Alternatively, the information that the sender is
listed can be combined with a local analysis result to make a
final decision.

RBLs generally receive information about malicious senders
from spam messages delivered to spamtrap email addresses,
manual listings, or user feedback. There are several drawbacks

to this approach. To be automatically listed, a particular spam
run needs to target a spamtrap email address. All messages
that have been delivered to other addresses beforehand cannot
be stopped. Manual listings and user feedback require a human
in the loop and are inherently non-automatic. This results in a
slow reaction time, which is especially problematic since most
machines sending spam are zombie machines with only a few
hours of sending activity.

One approach to counter these shortcomings is to take more
sources of feedback into account. Especially the real-time
queries sent over DNS can yield additional insight. Fig. 1
shows the data that can be gathered from such a query. A
sending host with IP addressQ tries to send a message to a
receiving email server. The email server queries an RBL for
the IP address of the sending host (Q), which we therefore
call the queried IP. The query is relayed over DNS to an
RBL server, which will see the query packet coming from the
IP addressS of the DNS server, which we call thesource IP.
In addition, the timeT the query has been received is stored.
This results in a tuple< Q, S, T > generated by every query.

Ramachandranet al. analyze the source IPs querying an
RBL [1]. They investigate a dataset of RBL queries to spot
exploited machines (zombies) in botnets that are sending
queries to test whether members of the same botnet have been
blacklisted. Therefore, additional information can be obtained
with regard to the maliciousness of the source IP.

Ramachandranet al. propose another approach that is able
to detect malicious IPs if information on the destination
domain is available by looking at the distribution of domains
to which a sending IP sends email [2].

However, such classifiers cannot always make a definite
decision. Introducing a continuous reputation value in contrast
to a discrete yes/no decision allows the user of such a
system to define his or her own thresholds. More importantly,
this continuous value can be used as a feature in a local
classification engine.

One such reputation system is Secure Computing’s Trust-
edSource [3]. TrustedSource operates on a wide range of
data sources including proprietary and public data. The lat-
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Fig. 1. Data gathered from query.

ter includes public information obtained from DNS records,
WHOIS data, or real-time blacklists (RBLs). The proprietary
data is gathered by over 5000 IronMail appliances that give a
unique view into global enterprise email patterns. Based on
the needs of the IronMail administrator, the appliance can
share different levels of data and can query for reputation
values for different aspects of an email message. Currently,
TrustedSource can calculate a reputation value for the IP
address a message originated from, for URLs in the message,
or for message fingerprints. This research uses queries for IPs
as input to detect spam sender IPs among them.

In previous work, we outlined the detection of spam senders
based on query patterns [4]. This approach allows gaining
additional information on the queried (sending) IP by aggre-
gating query patterns into spectral and breadth features with a
focus on spectral features.

In this paper, we focus on the extraction of breadth features.
In addition, we compare the performance of GSVM-BA we
proposed previously with four standard algorithms.

The rest of the paper is organized as follows. Section II
describes the data we use for classification modeling. Section
III gives a brief review of research on imbalanced classifi-
cation. In Section IV, GSVM-BA is presented in detail as a
solution to the class imbalance challenge. Section V compares
performance between GSVM-BA and cost-sensitive learning
with four classification algorithms on IP classification. Finally,
Section VI concludes the paper.

II. QUERY DATA ANALYSIS

TrustedSource reputation system provides an RBL-style in-
terface to retrieve reputation values for IP addresses over DNS.
While TrustedSource allows other means to be queried that can
include additional information such as message fingerprints or
email header metadata, we limit this classification problem to
< Q, S, T > tuples (orQST datain short) since this type of
data is the most generic one and applies also to standard RBLs
widely used on the Internet today.

A. Sources of Noise

Generally, an IP that is queried has sent a message shortly
before the query has been logged (at timeT ). Note that this
assumption does not always hold. IPs can also be queried

by hand by humans trying to find information regarding a
listing. Also, as noted previously, some zombie machines
try to automatically send queries to evade IP-based blocking
mechanisms [1]. Zombies could also attempt to actively poison
the data feed by submitting bogus queries. Lastly, not all
messages result in queries since DNS results can be cached.
This can occur even when an RBL server specifically returns
low time-to-live (TTL) values with its responses due to DNS
servers relaying these responses not honoring the TTL values.
Normally, a well designed classifier will be able to still yield
useful results in the presence of such noise, but there are a
number of techniques to avoid these problems. These include
moving away from DNS (not desirable for RBLs since DNS
queries are an accepted standard and widely supported), adding
a unique string to the query (to prevent caching, needs to be
supported by both email server client and RBL server), and
adding authentication information (to prevent data poisoning).

B. Feature Extraction

For this research, we are interested in classifying email
senders based on their sending behavior. For each sender
observed in the data set (i.e. each queried IP), we calculate a
number of features based on the distribution of source IPs (S)
and timestamps (T ). These fall into two general categories:
spectral features and breadth features.

1) Spectral Features:Spectral features are based on the
distribution of the set of timestamps observed for each queried
IP. Currently, we do not take source IP information into
account for this set of features. Under the assumptions outlined
previously, each timestamp seen from a particular IPQi

corresponds to a message sent fromQi. We consider a time
interval ∆T that we split up inN equally sized intervals
∆tn where n = 0 . . . (N − 1). The number of timestamps
falling into interval ∆tn is denotedcn, which corresponds
to the total number of messages observed fromQi in that
interval. This sequence is then transformed into the frequency
domain using a discrete Fourier transform (DFT). Since we
do not consider time zones or time shifts, we are only
interested in the magnitude of the complex coefficients of the
transformed sequence and throw away the phase information.
This results in the sequenceCk. C0 is the constant component
that corresponds to the total message count. The message
count will be considered as part of the breadth features, and
we will use it here only to normalize coefficients yielding
a new sequenceC′

k = Ck/C0. Furthermore, since the input
sequencecn is real, all output coefficientsCk with k > N/2
are redundant due to the symmetry properties of the DFT and
can be ignored.

We have chosen∆T = 24 h and N = 48 resulting in 30
minute time slots∆ti. This results in 24 usable raw spectral
features,C′

1
to C′

24
. An evaluation of these raw features

indicated that for ham senders there are three distinct groups.
C′

1, C′

2 to C′

4, and C′

5 to C′

24 all lie within specific ranges.
We useC′

1
, the mean and the standard deviation ofC′

2
to C′

4
,

and the mean the standard deviation ofC′

5
to C′

24
as the first
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five spectral features. In addition, we add log-scaled versions
of C′

1
to C′

24
to the spectral feature set.

The selection of these features is mostly based on heuristics
at this point, and we expect to be able to achieve a vastly
improved performance after a careful analysis. Spectral fea-
tures have been previously covered in our preliminary results
presented in [4].

2) Breadth Features:Breadth features are also calculated
based on data gathered in a 24 hour time window. In that win-
dow, the sending behavior of each queried IPQ is analyzed.
First, the numbers of source IPsS queryingQ is calculated,
which we denoteBsrc. Under the assumptions made this count
reflects the number of recipients thatQ attempted to send
email to. SinceS is the IP of the DNS server relaying the
query and multiple recipients may either use the same DNS
server or one recipient may use multiple DNS servers, this
count does not perfectly reflect the amount of recipients. It
does however give a good idea about the breadth of recipients
across the Internet. For the sake of brevity we refer to the
source IP of a query (i.e. the IP address of the DNS server
relaying that query) as thevirtual recipient—keeping in mind
that the actual recipient is not exposed in the QST data.

Second, the number of queries for each IPQ (and therefore
the number of messages sent by that IP) denotedBmsgs is
calculated. As previously explained, a major source of noise
in this feature is due to caching.

Third, we introduce the notion of asession. A session is
a 30 minute period in which an IPQi sends to a particular
virtual recipientSj . WhenSj queriesQi (i.e. whenQi sends
a message to the virtual recipientSj) for the first time, a new
session is counted. This session is valid for 30 minutes, and all
additional queries involving< Qi, Sj > do not result in new
sessions (while queries involving a different virtual recipient
in the same time frame will). After 30 minutes the session is
closed, and a query will result in a new session. All sessions
for Qi across all virtual recipients are summed up yielding the
session countBssn. Note that this feature mimics the query
pattern that would be observed if the relaying DNS server
would cache all queries with a 30 minute TTL.

Fourth, we calculate the average number of messages per
session per particular source IP, sum all averaged values up,
and divide by the total number of sessions. We denote this
feature asBmpss.

Fifth, we calculate the number of global sessions. A global
session is akin to a regular session but does not distinguish
between different virtual recipients and therefore reflects the
global time of activity for each queried IP. We denote the
global session count asBgssn.

Lastly, we heuristically incorporate two derived features,
Bs/m =

Bsrc
Bmpss

andBs/s=
Bssn
Bsrc

.

The Signal-to-Noise ratio (S2N), defined as the distance of
the arithmetic means of the spam and non-spam (ham) classes
divided by the sum of the corresponding standard deviations
[5], for each of these five features is presented in Table I. The
S2N values show that these breadth features are informative
and can be utilized for classification modeling. TheBgssn

TABLE I

BREADTH FEATURE CHARACTERISTICS

S2N µspam σspam µham σham
Bsrc 0.07 136.14 138.13 161.90 227.93
Bssn 0.16 182.35 243.83 324.35 673.69
Bgssn 0.44 12.68 10.27 22.50 12.05
Bmsgs 0.13 287.34 464.73 617.15 2108.90
Bmpss 0.09 3.01 19.08 1.03 3.20
Bs/m 0.21 0.65 0.23 0.55 0.25
Bs/s 0.24 1.17 0.32 1.78 2.23
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Fig. 2. Probability density forBgssn for spam and ham senders.

feature achieves the best ratio. The probability densities for
the spam and ham classes of this particular feature are shown
in Figure 2.

III. I MBALANCED CLASSIFICATION

How to build an effective and efficient model on a huge
and complex dataset is a major concern of the science of
knowledge discovery and data mining. With emergence of new
data mining application domains such as messaging security,
e-business, and biomedical informatics, more challenges are
arising. Among them, highly skewed data distribution has been
attracting noticeably increasing interest from the data mining
community due to its ubiquitousness and importance [6], [7].

A. Class Imbalance

Class imbalance happens when the distribution on the
available dataset is highly skewed. This means that there are
significantly more samples from one class than samples from
another class for a binary classification problem. Class imbal-
ance is ubiquitous in data mining tasks, such as diagnosing
rare medical diseases, credit card fraud detection, intrusion
detection for national security, etc.

For spam filtering, each IP is classified as spam or non-spam
based on its sending behavioral patterns. This classification
is highly imbalanced, as shown in our experiments. As our
current target in this research is to detect spam IPs, we define
spam IPs as positive and non-spam IPs as negative.
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B. Methods for Imbalanced Classification

Many methods have been proposed to handle imbalanced
classification, and some good results have been reported [7].
These methods can be categorized into three different kinds:
cost-sensitive learning, oversampling the minority class, or
undersampling the majority class. Interested readers may refer
to [8] for a good survey.

For a real world classification task like spam IP detection,
there are usually a large amount of IP samples. These samples
need to be classified quickly so that spam messages from those
IPs can be blocked in time. However, cost sensitive learning or
oversampling usually increases decision complexity and hence
slows down classification. On the other hand, undersampling
is a promising method to improve classification efficiency.
Unfortunately, random undersampling may not generate ac-
curate classifiers because informative majority samples may
be removed.

In this paper, granular computing and SVM are utilized for
undersampling by keeping informative samples while elim-
inating irrelevant, redundant, or even noisy samples. After
undersampling, data is cleaned and hence a good classifier can
be modeled for IP classification both in terms of effectiveness
and efficiency.

C. SVM for Imbalanced Classification

SVM approximates the structural risk minimization prin-
ciple that minimizes an upper bound on the expected risk
[9], [10]. Because structural risk is a reasonable trade-off
between the training error and the modeling complication,
SVM has a great generalization capability. Geometrically, the
SVM modeling algorithm works by constructing a separating
hyperplane with the maximal margin.

Compared with other standard classifiers, SVM performs
better on moderately imbalanced data. The reason is that
only Support Vectors (SVs) are used for classification and
many majority samples far from the decision boundary can
be removed without affecting classification [11]. However,
performance of SVM is significantly deteriorated on highly
imbalanced data [11], [12]. For this kind of data, it is prone
to find the simplest model that best fits the training dataset.
Unfortunately, the simplest model is exactly the naı̈ve classifier
that identifies all samples as part of the majority class.

SVM is usually much slower than other standard classifiers
[13], [14], [15]. The speed of SVM classification depends on
the number of SVs. For a new sampleX , K(X, SV ) is calcu-
lated for eachSV . Then it is classified by aggregating these
kernel values with a bias. To speed up SVM classification, one
potential method is to decrease the number of SVs.

IV. T HE GSVM-BA ALGORITHM

In this work, the Granular Support Vector Machines-
Boundary Alignmentalgorithm (GSVM-BA) is designed and
targeted at improving both effectiveness and efficiency for IP
classification based on the principles of granular computing.

Training data

SVM learning

Remove
positive
support
vectors

Validation
data

SVM prediction

Performance
improved?

Output the
second last

SVM

No

Yes

Fig. 4. Flow chart of the GSVM-BA algorithm.

A. Granular Computing and GSVM

Granular computing represents information in the form of
some aggregates (calledinformation granules) such as subsets,
subspaces, classes, or clusters of a universe. It then solves the
targeted problem in each information granule [16]. There are
two principles in granular computing. The first principle is
divide-and-conquer to split a huge problem into a sequence of
granules (granule split); The second principle is data cleaning
to define the suitable size for one granule to comprehend the
problem at hand without getting buried in unnecessary details
(granule shrink). As opposed to traditional data-oriented nu-
meric computing, granular computing is knowledge-oriented
[17]. By embedding prior knowledge or prior assumptions into
the granulation process for data modeling, better classification
can be achieved.

A granular computing-based learning framework called
Granular Support Vector Machines (GSVM) was proposed in
[18]. GSVM combines the principles from statistical learning
theory and granular computing theory in a systematic and
formal way. GSVM works by extracting a sequence of in-
formation granules with granule split and/or granule shrink,
and then building an SVM on some of these granules when
necessary. The main potential advantages of GSVM are:

1) GSVM is more sensitive to the inherent data distribution
by trading off between local significance of a subset of
data and global correlation among different subsets of
data, or trading off between information loss and data
cleaning. Hence, GSVM may improve the classification
performance.

2) GSVM may speed up the modeling process and the clas-
sification process by eliminating redundant data locally.
As a result, it is more efficient and scalable on huge
datasets.
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Fig. 3. GSVM-BA can push the boundary back close to the ideal position with fewer SVs.

B. GSVM-BA

Armed with the data cleaning principle of granular comput-
ing, GSVM-BA is ideal for spam IP detection on highly im-
balanced data derived from QST data. SVM assumes that only
SVs are informative to classification and other samples can be
safely removed. However, for highly imbalanced classification,
the majority class pushes the ideal decision boundary toward
the minority class [11], [12]. As demonstrated in Fig. 3(a),
positive SVs that are close to the learned boundary may be
noisy. Some really informative samples may hide behind them.

To find these informative samples, we can conduct cost-
sensitive learning to assign higher penalty values to false
positives (FP) than false negatives (FN). This method is named
SVM+CS. However, to counter the increased weights on the
minority side, SVM+CS increases the number of majority SVs
(Fig. 3(b)), and hence slows down the classification process.

In contrast to this, GSVM-BA looks for these informative
samples by repetitively removing positive support vectors from
the training dataset and rebuilding another SVM. GSVM-BA
is knowledge-oriented in that it embeds theboundary push
assumption (“prior knowledge”)into the modeling process.
After an SVM is modeled, agranule shrink operation is
executed to remove corresponding positive SVs to generate a
smaller training dataset on which a new SVM is modeled. This
process is repeated to gradually push the boundary back to its
ideal location where the optimal classification performance is
achieved.

Empirical studies in the next section show that GSVM-BA
can compute a better decision boundary with much fewer
samples involved in the classification process (Fig. 3(c)).
Consequently, classification performance can be improved in
terms of both effectiveness and efficiency. Fig. 4 sketches the
GSVM-BA algorithm. The first SVM is always the naı̈ve one
by default.

V. EXPERIMENTS

Classification modeling is carried out on a workstation with
a Pentium MR©CPU at 1.73 GHz and 1 GB of memory.
The experiments are targeted at comparing the performance
between GSVM-BA undersampling and cost-sensitive learning

with different classification algorithms on highly imbalanced
IP classification.

A. Data Preparation

We build classifiers on the daily based email server behav-
ioral data, which are retrieved from over 7000 sensors located
in 51 countries. We see several millions IPs every day. About
32% IPs can be labeled as spam or ham based on information
from the real production system. By running the TrustedSource
system over 5 years already, the labeling information is very
reliable.

Although our inherent task is to build classifiers on these
32% known IPs to catch spam senders in the remaining 68%
unknown IPs, we use QST data from labeled IPs for perfor-
mance comparison. The QST data gathered on 08/14/2006 is
used for training. The QST data gathered between 08/07/2006
and 08/13/2006 is used for validation. Data used for testing has
been collected from 08/15/2006 to 09/11/2006. The validation
dataset and the testing dataset pass through a stratified random
undersampling process so that each of them has similar size to
one day’s data. It is convenient for us to estimate classification
efficiency in the real production system, in which QST features
are retrieved from past 24 hours data. As shown in Table II,
the datasets are highly imbalanced with over 93% of the IPs
being spam IPs.

TABLE II

QST DATA DISTRIBUTION

spam non-spam
training data 93.96% 6.04%
validation data 93.09% 6.91%
testing data 94.99% 5.01%

The training dataset is normalized so that the value of each
input feature falls into the interval of [-1,1]. The validation
dataset and the testing dataset are normalized correspondingly.

In the modeling phase, multiple algorithms are applied on
the training dataset to build classifiers that are tuned to get the
best performance on the validation dataset. The performance
of these classifiers on the testing dataset is then reported.
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Fig. 5. ROC analysis.

B. Evaluation Metrics

The performance evaluation is directly related to our spam
detection application. To make the classification result reliable,
it is required that fpr, as defined in (1), should be less than
1%. This threshold is decided based on the feedback from the
technical support team. As they noticed, with fpr under 1%,
the FP reports from our customers are controlled at a business
satisfied level. In our modeling process, we decide to control
the fpr at 0.8% on the validation dataset to be slightly more
conservative. With this prerequisite in mind, we are also trying
to increase the tpr, which is defined in (2).

fpr = FP/(FP + TN) (1)

tpr = TP/(TP + FN) (2)

C. Classification Algorithms

Four classification algorithms are used in this study.

1) The C4.5 algorithm for building a decision tree [19].
2) The NBTree algorithm for building a decision tree with

naı̈ve Bayes classifiers at the leaves [20].
3) The Logistic algorithm for building a multinomial logis-

tic regression model with a ridge estimator [21].
4) The SVM algorithm for building a support vector ma-

chine [9].

These algorithms represent the state of the art in machine
learning as well as the most popular and widely deployed
classification solutions.

For the first three algorithms, we choose the Weka software
package (available athttp://www.cs.waikato.ac.
nz/ml/weka/). We also choose LIBSVM (available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm)
for SVM modeling with the RBF kernel. A cost-sensitive
meta-learning strategy is utilized to handle class imbalance
between spam IPs and non-spam ones. The misclassification
cost for a FN is always 1 while the misclassification cost
for a FP is tuned such that the fpr is close to 0.8% on the
validation dataset.

As classification with SVM+CS is extremely slow, we de-
signed GSVM-BA. A sequence ofgranular shrinkoperations
is executed to recursively remove positive support vectors and
thus to align the classification boundary until the fpr is close
to 0.8% on the validation dataset.

For a thorough comparison between GSVM-BA and cost-
sensitive learning, we also run C4.5, NBTree, and Logistic
algorithms on the training dataset after GSVM-BA undersam-
pling besides running them on the original training dataset.

D. Result Analysis

TABLE III

EFFECTIVENESSCOMPARISON

validation testing
tpr% fpr% tpr% fpr%

SVM+CS 22.51 0.83 25.55 0.88
GSVM-BA 26.32 0.81 28.17 0.83
C4.5+CS 20.87 0.79 20.36 0.68
C4.5+GSVM 23.92 0.80 24.13 0.93
NBTree+CS 22.42 0.73 20.61 0.74
NBTree+GSVM 19.39 0.72 19.29 0.61
Logistic+CS 12.20 0.81 13.19 0.72
Logistic+GSVM 16.29 0.81 17.87 1.22

TABLE IV

EFFICIENCY COMPARISON

#SVs
validation testing
(seconds) (seconds)

SVM+CS 20151 8129 8571
GSVM-BA 413 261 241
C4.5+CS N/A 13 13
C4.5+GSVM N/A 13 13
NBTree+CS N/A 22 20
NBTree+GSVM N/A 21 19
Logistic+CS N/A 15 14
Logistic+GSVM N/A 15 14
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Table III compares the effectiveness of the four classification
algorithms, combined with the two rebalance techniques. For
each combination, the tpr and the fpr are reported both on
the validation dataset and on the testing dataset. Modeled on
simple QST data, the classifiers demonstrate a significantly
high tpr and are therefore effective to catch a large number of
spam senders. With the fpr threshold in mind, GSVM-BA is
the most effective algorithm with SVM+CS in second place.

Fig. 5 reports ROC analysis [22] results. Only curves with
fpr ≤ 1% are plotted so that the comparison is meaningful
for the real system. GSVM-BA has the largest area under ROC
curve. Moreover, the figures show that GSVM-BA has always
the largest tpr for any fpr under 1%. The comparison between
the validation performance and the testing performance shows
that no overfitting happens.

Although being slower than C4.5, NBTree, or Logistic,
GSVM-BA is much faster than SVM+CS for classification
as demonstrated in Table IV. The reason is that GSVM-BA
extracts much less (only 2%) SVs than SVM+CS. It takes
about 4 minutes for classification. Considering the fact that
it takes about 30 minutes to retrieve QST data in the real
production system, the efficiency improvement is proved to be
critical to decrease the response time to detect spam senders.

In our experiments, we observed similar modeling time for
GSVM-BA and SVM+CS. For GSVM-BA, most of modeling
time is consumed at the first few rounds ofgranule shrink
operations. After that, it becomes much faster for SVM
modeling to converge because the decision boundary becomes
much clearer as the positive SVs are removed.

We do GSVM-BA modeling once every month (offline
learning). And then we use the model for classification in
the next month (online classification). So classification effi-
ciency is critical while modeling efficiency is not in the real
production system.

It has been running for one year and has demonstrated stable
performance. For effectiveness, it can catch about 28% spam
senders with less than 1% fpr. For efficiency, it only takes
about 4 minutes to classify the latest samples.

VI. CONCLUSION

Four state-of-the-art classification algorithms are utilized to
detect malicious email servers on low-informative and highly
imbalanced QST data based on global messaging patterns.
Based on simple QST records that do not appear to be infor-
mative at a first glance, the breadth and spectral features are
extracted. Our study demonstrates that these features combined
with advanced classification techniques can be reliable for
spam detection if combined with methods to deal with class
imbalance. SVM with cost-sensitive learning suffers from a
long run time due to the large amount of support vectors,
which is problematic for detecting malicious senders typically
sending only for a few hours. To improve efficiency, GSVM-
BA is proposed to handle class imbalance with undersam-
pling by recursively eliminating positive support vectors and
rebuilding another SVM. Our study demonstrates that GSVM-
BA greatly speeds up the classification process by extracting

much less support vectors. GSVM-BA is even more effective
than SVM with cost-sensitive learning. At the same FP rate
level acceptable for real application, GSVM-BA catches more
spam email servers. The resulting classifier contributes to
TrustedSource as one source of input and prevents malicious
or unwanted messages being delivered to email users.
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