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Abstract— Traditional classification algorithms can be limited
in their performance on highly unbalanced datasets. A popular
stream of work for countering the problem of class imbalance has
been application of a sundry of sampling strategies. In this work,
we focus on designing modifications to SVM to appropriately
tackle the problem of class imbalance. We incorporate different
“rebalance” heuristics in SVM modeling including cost-sensitive
learning, oversampling, and undersampling. These SVM based
strategies are compared with various state-of-the-art approaches
on a variety of datasets by using various metrics, including G-
mean, Area Under ROC Curve (AUC-ROC), F-measure, and
Area Under Precision/Recall Curve (AUC-PR). We show that
we are able to surpass or match the previously known best
algorithms on each dataset. In particular, of the four SVM
variations considered in this paper, the novel Granular Support
Vector Machines - Repetitive Undersampling algorithm (GSVM-
RU) is the best in terms of both effectiveness and efficiency.
GSVM-RU is effective as it can minimize the negative effect
of information loss while maximizing the positive effect of data
cleaning in the undersampling process. GSVM-RU is efficient by
extracting much less support vectors, and hence greatly speeding
up SVM prediction.

Index Terms— highly imbalanced classification, cost-sensitive
learning, oversampling, undersampling, computational intelli-
gence, support vector machines, granular computing.

I. INTRODUCTION

Mining highly unbalanced datasets, particularly in a cost-
sensitive environment, is among the leading challenges for
knowledge discovery and data mining [1], [2]. The class imbal-
ance problem arises when the class of interest is relatively rare
as compared to the other class(es). Without loss of generality
we will assume that the positive class (or class of interest)
is the minority class, and the negative class is the majority
class. Various applications demonstrate this characteristic of
high class imbalance, such as bioinformatics, e-business, in-
formation security, to national security. For example, in the
medical domain the disease may be rarer than normal cases;
in business the defaults may be rarer than good customers, etc.
For our work on the Secure Computing TrustedSource network
reputation system (http://www.trustedsource.org), we have to
address the high imbalance towards malicious IP addresses. In
addition, rapid classification is paramount as most malicious
machines are only active for a brief period of time [3].
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Sampling strategies, such as oversampling and undersam-
pling, are extremely popular in tackling the problem of class
imbalance. That is, either the minority class is oversampled
or majority class is undersampled or some combination of the
two is deployed. In this paper, we focus on learning Support
Vector Machines (SVM) with different sampling techniques.
We focus on comparing the methodologies on the aspects of
effectiveness and efficiency. While, effectiveness and efficiency
can be application dependent, in this work we define them as
follows:

Definition 1: Effectiveness means the ability of a model to
accurately classify unknown samples, in terms of some metric.

Definition 2: Efficiency means the speed to use a model to
classify unknown samples.

SVM embodies the structural risk minimization principle
to minimize an upper bound on the expected risk [4], [5].
Because structural risk is a reasonable trade-off between the
training error and the modeling complication, SVM has a
superior generalization capability. Geometrically, the SVM
modeling algorithm works by constructing a separating hyper-
plane with the maximal margin. Compared with other standard
classifiers, SVM is more accurate on moderately imbalanced
data. The reason is that only Support Vectors (SVs) are used
for classification and many majority samples far from the deci-
sion boundary can be removed without affecting classification
[6]. However, an SVM classifier can be sensitive to high class
imbalance, resulting in a drop in the classification performance
on the positive class. It is prone to generating a classifier
that has a strong estimation bias towards the majority class,
resulting in a large number of false negatives [6], [7].

There have been some recent works in improving the
classification performance of SVM on unbalanced datasets [8],
[6], [7]. However, they do not address efficiency very well,
and depending on the strategy for countering imbalance, they
can take a longer time for classification than a standard SVM.
Also, SVM can be slow for classification on large datasets
[9], [10], [11]. The speed of SVM classification depends on
the number of SVs. For a new sample X, K(X,SV), the
similarity between X and SV, is calculated for each SV. Then
it is classified using the sum of these kernel values and a bias.
To speed up SVM classification, one method is to decrease
the number of SVs.

We previously presented a preliminary version of the Gran-
ular Support Vector Machines - Repetitive Undersampling
(GSVM-RU) algorithm [12]. A variant of this GSVM tech-
nique has been successfully integrated into Secure Comput-
ing’s TrustedSource reputation system for providing real-time
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TABLE I
CONFUSION MATRIX

predicted positives  predicted negatives
real positives TP FN
real negatives FP TN

collaborative sharing of global intelligence about the latest
email threats [3]. However, it remains unclear how GSVM-RU
performs compared to other state-of-the-art algorithms. There-
fore, we present an exhaustive empirical study on benchmark
datasets.

In this work, we also theoretically extend GSVM-RU based
on the information loss minimization principle and design a
new “combine” aggregation method. Furthermore, we revise
it as a highly effective and efficient SVM modeling technique
by explicitly executing granulation and aggregation by turns,
and hence avoiding extracting too many negative granules. As
a prior-knowledge-guided repetitive undersampling strategy to
“rebalance” the dataset at hand, GSVM-RU can improve clas-
sification performance by 1) extracting informative samples
that are essential for classification and 2) eliminating a large
amount of redundant or even noisy samples. Besides GSVM-
RU, we also propose three other SVM modeling methods
that overweight the minority class, oversample the minority
class, or undersample the majority class. These SVM modeling
methods are compared favorably to previous works in 25
groups of experiments.

The rest of the paper is organized as follows. Background
knowledge is briefly reviewed in Section II. Section III
presents GSVM-RU and three other SVM modeling algorithms
with different “rebalance” techniques. Section IV compares
these four algorithms to state-of-the-art approaches on seven
highly imbalanced datasets under different metrics. Finally,
Section V concludes the paper.

II. BACKGROUND
A. Metrics for Imbalanced Classification

Many metrics have been used for effectiveness evaluation
on imbalanced classification. All of them are based on the
confusion matrix as shown at Table I. With highly skewed data
distribution, the overall accuracy metric at (1) is not sufficient
any more. For example, a naive classifier that predicts all
samples as negative has high accuracy. However, it is totally
useless to detect rare positive samples. To deal with class
imbalance, two kinds of metrics have been proposed.

B TP+TN !

Y = TP Y FP+ FN + TN )

To get optimal balanced classification ability, sensitivity
at (2) and specificity at (3) are usually adopted to monitor
classification performance on two classes separately. Notice
that sensitivity is also called true positive rate or positive
class accuracy, while specificity called true negative rate or
negative class accuracy. Based on these two metrics, G-Mean
was proposed at (4), which is the geometric mean of sensitivity
and specificity [13]. Furthermore, Area Under ROC Curve

(AUC-ROC) can also indicate balanced classification ability
between sensitivity and specificity as a function of varying a
classification threshold [14].

sensitivity = TP/(TP + FN) (2)
specificity = TN/(TN + FP) 3)
G — Mean = \/sensitivity * speci ficity “4)

On the other hand, sometimes we are interested in highly
effective detection ability for only one class. For example,
for credit card fraud detection problem, the target is detecting
fraudulent transactions. For diagnosing a rare disease, what we
are especially interested in is to find patients with this disease.
For such problems, another pair of metrics, precision at (5) and
recall at (6), is often adopted. Notice that recall is the same as
sensitivity. F-Measure at (7) is used to integrate precision and
recall into a single metric for convenience of modeling [15].
Similar to AUC-ROC, Area Under Precision/Recall Curve
(AUC-PR) can be used to indicate the detection ability of a
classifier between precision and recall as a function of varying
a decision threshold [16].

precision = TP/(TP + FP) (5)
recall =TP/(TP+ FN) (6)

F - Measure — 2 x pTcicz"sz'on x recall 7
precision + recall

In this work, the perf code, which is available at
http://kodiak.cs.cornell.edu/kddcup/software.html, is utilized
to calculate all of the four metrics.

B. Previous Methods for Imbalanced Classification

Many methods have been proposed for imbalanced classi-
fication, and some good results have been reported [2]. These
methods can be categorized into three different categories:
cost-sensitive learning, oversampling the minority class or
undersampling the majority class. Interested readers may refer
to [17] for a good survey. However, different measures have
been used by different authors, which makes comparisons
difficult.

Recently, several new models have been reported in the
literature with good classification performance on imbalanced
data. Hong et al. proposed a classifier construction approach
based on orthogonal forward selection (OFS), which precisely
aims at high effectiveness and efficiency [18]. Huang et
al. proposed Biased Minimax Probability Machine (BMPM),
which offers an elegant and systematic way to incorporate a
certain bias for the minority class by directly controlling the
lower bound of the real accuracy [19], [20].

Previous research that aims to improve the effectiveness
of SVM on imbalanced classification includes the follow-
ing. Vilarifio et al. used Synthetic Minority Oversampling
TEchnique (SMOTE) [21] oversampling and also random
undersampling for SVM modeling on an imbalanced intestinal
contractions detection task [22]. Raskutti et al. demonstrated
that a one-class SVM that learned only from the minority
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class sometimes can perform better than an SVM modeled
from two classes [8]. Akbani et al. proposed the SMOTE with
Different Costs algorithm (SDC) [6]. SDC conducts SMOTE
oversampling on the minority class with different error costs.
As a result, the decision boundary can be far away from
the minority class. Wu et al. proposed the Kernel Boundary
Alignment algorithm (KBA) that adjusts the boundary toward
the majority class by modifying the kernel matrix [7].

Vilarifio et al. worked on only one dataset [22]. One-
class SVM actually performs worse in many cases compared
to a standard two-class SVM [8]. SDC or KBA improves
classification effectiveness on a two-class SVM. However, they
are not efficient and hence difficult to be scalable to very
large datasets. Wu et al. reported KBA usually takes a longer
time for classification than SVM [7]. SDC is also slower than
standard SVM modeling because oversampling increases the
number of SVs. Unfortunately, SVM itself is already very slow
on large datasets [9], [10], [11].

Our work contrasts with the previous work as follows:

e Most of prior works evaluate classification performance
only on one or two metrics mentioned above. We present
a broader experimental study on all four metrics.

o Most of previous works use decision trees as the basic
classifier [1]. While, there are some recent papers on
SVM for imbalanced classification [22], [8], [6], [7],
the application of SVM is still not completely explored,
particularly the realm of undersampling of SVs. Because
SVM decides the class of a sample only based on
SVs, which are training samples close to the decision
boundary, the modeling effectiveness and efficiency may
be improved for imbalanced classification by exploring
the SVs-based undersampling.

III. GSVM-RU ALGORITHM

Granular computing represents information in the form of
some aggregates (called information granules) such as subsets,
subspaces, classes, or clusters of a universe. It then solves the
targeted problem in each information granule [23]. There are
two principles in granular computing. The first principle is
divide-and-conquer to split a huge problem into a sequence of
granules (granule split); The second principle is data cleaning
to define the suitable size for one granule to comprehend the
problem at hand without getting buried in unnecessary details
(granule shrink). As opposed to traditional data-oriented nu-
meric computing, granular computing is knowledge-oriented
[24]. By embedding prior knowledge or prior assumptions
into the granulation process for data modeling, better classifi-
cation can be obtained. A granular computing-based learning
framework called Granular Support Vector Machines (GSVM)
was proposed in our previous work [25]. GSVM combines
the principles from statistical learning theory and granular
computing theory in a systematic and formal way. GSVM
extracts a sequence of information granules with granule split
and/or granule shrink, and then builds SVMs on some of these
granules if necessary. The main potential advantages of GSVM
are:

o GSVM is more sensitive to the inherent data distribution

by establishing a trade-off between local significance of
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original SVM learning

Fig. 1. Original SVM modeling. The circled points denote SVs.

SVM-WEIGHT

Fig. 2. SVM-WEIGHT modeling. The circled points denote SVs.

a subset of data and global correlation among different
subsets of data, or between information loss and data
cleaning. Hence, GSVM may improve classification ef-
fectiveness.

o« GSVM may speed up the classification process by elim-
inating redundant data locally. As a result, it is more
efficient and scalable on huge datasets.

Based on GSVM, we propose Granular Support Vector Ma-
chines - Repetitive Undersampling (GSVM-RU) that is specif-
ically designed for highly imbalanced classification.

A. GSVM-RU

SVM assumes that only SVs are informative to classification
and other samples can be safely removed. However, for highly
imbalanced classification, the majority class pushes the ideal
decision boundary toward the minority class [6], [7]. As
demonstrated in Fig. 1, negative SVs (the circled minus signs)
that are close to the learned boundary may not be the most
informative or even noisy. Some informative samples may
hide behind them. To find these informative samples, we
can conduct cost-sensitive learning or oversampling. However,
these two “rebalance” strategies increase the number of SVs
(Fig. 2 and Fig. 3), and hence slow down the classification
process.

To improve efficiency, it is natural to decrease the size of
the training dataset. In this sense, undersampling is by nature
more suitable to model an SVM for imbalanced classification
than other approaches. However, elimination of some samples
from the training dataset may have two effects:
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SVM-SMOTE

Fig. 3. SVM-SMOTE modeling. The circled points denote SVs.

Ideal
Learned

SVM-RANDU

Fig. 4. SVM-RANDU modeling. The circled points denote SVs.

o Information loss: due to the elimination of informative or
useful samples, classification effectiveness is deteriorated;
« Data cleaning: because of the elimination of irrelevant or
redundant or even noisy samples, classification effective-
ness is improved.
For a highly imbalanced dataset, there may be many re-
dundant or noisy negative samples. Random undersampling
is a common undersampling approach for rebalancing the
dataset to achieve better data distribution. However, random
undersampling suffers from information loss. As Fig. 4 shows,
although random undersampling pushes the learned boundary
close to the ideal boundary, the cues about the orientation of
the ideal boundary may be lost [6].
GSVM-RU is targeted to directly utilize SVM itself for
undersampling. The idea is based on the well-known fact
about SVM - only SVs are necessary and other samples can

Ideal
Leamned

GSVM-RU

Fig. 5. GSVM-RU modeling. The circled points denote SVs.

be safely removed without affecting classification. This fact
motivates us to explore the possibility to utilize SVM for data
cleaning/undersampling.

However, due to highly skewed data distribution, the SVM
modeled on the original training dataset is prone to classify
every sample to be negative. As a result, a single SVM
cannot guarantee to extract all informative samples as SVs.
Fortunately, it seems reasonable to assume one single SVM
can extract a part of, although not all, informative samples.
Under this assumption, multiple information granules with
different informative samples can be formed by following
granulation operations. Firstly, we assume that all positive
samples are informative to form a positive information granule.
Secondly, negative samples extracted by an SVM as SVs
are also possibly informative so that they form a negative
information granule. Here we call these negative samples
Negative Local Support Vectors (NLSVs). Then these NLSVs
are removed from the original training dataset to generate a
smaller training dataset, on which a new SVM is modeled
to extract another group of NLSVs. This process is repeated
several times to form multiple negative information granules.
After that, all other negative samples still remaining in the
training dataset are simply discarded.

An aggregation operation is then executed to selectively
aggregate the samples in these negative information granules
with all positive samples to complete the undersampling
process. Finally, an SVM is modeled on the aggregated dataset
for classification. As demonstrated in Fig. 5, because only
a part of NLSVs (and the negative samples very far from
the decision area) are removed from the original dataset,
GSVM-RU undersampling can still give good cues about the
orientation of the ideal boundary, and hence can overcome the
shortcoming of random undersampling as mentioned above.
Fig. 6 sketches the idea of GSVM-RU.

For SVM modeling, GSVM-RU adds another hyper-
parameter Gr, the number of negative granules. To implement
GSVM-RU as an utilizable algorithm, there are two related
problems:

o« How many negative information granules should be

formed?

« How to aggregate the samples in these information gran-

ules?

It seems safe to extract more granules to reduce informa-
tion loss. However, information contributed by two different
granules may be redundant or even noisy to each other. And
hence, less granules may decrease these redundancy or noise
from the final aggregation dataset. In general, if Gr granules
are extracted, we have 2" different combinations to build the
final aggregation dataset. It is extremely expensive to try all
of these combinations.

For simplicity and efficiency, we revise the preliminary
GSVM-RU algorithm [12] and propose to run granulation
and aggregation in turns in this work. Firstly, the aggregation
dataset is initialized to consist of only positive samples. And
the best classification performance is initialized to be the
performance of the naive classifier that classifies every sample
as negative. When a new negative granule is extracted, the
corresponding NLSVs are immediately aggregated into the
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Fig. 6. Basic idea of GSVM-RU.
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aggregation dataset. An SVM is then modeled on this new
aggregation dataset. If classification performance is improved,
we continue to the next phase to extract another granule.
Otherwise the repetitive undersampling process is stopped and
the classifier in the previous phase will be saved for future
classification.

In [12], we proposed the “discard” operation for aggrega-
tion. When a new negative granule is extracted, only negative
samples in the latest granule are aggregated into the new
aggregation dataset and all samples in old negative granules
are discarded. This operation is based on the “boundary
push” assumption. If old NLSVs are discarded, the decision
boundary is expected to be closer to the ideal one. The
repetitive undersampling process is stopped when the new
extracted granule alone cannot further improve classification
performance.

However, the “discard” operation is not always suitable
because it removes all previous negative granules, which are
likely informative. In this work, we design a new ‘“combine”
aggregation operation. When a new granule is extracted, it
is combined with all old granules to form a new aggre-
gation dataset. The assumption is that not all informative
samples can be extracted as NLSVs in one granule. As a
result, it is expected to reduce information loss by extracting
NLSVs multiple times. The repetitive undersampling process
is stopped when the new extracted granule cannot further
improve classification performance if joint with the previous
aggregation dataset.

Which aggregation operation is better is data-dependent

and also metric-dependent. For efficiency, we run both of
them only when the second negative granule is extracted. The
winner will be used for the following aggregation. All SVMs
modeled in the repetitive process use the same kernel and the
same parameters, which are tuned with grid search [26]. With
such a repetitive undersampling process, a clear knowledge-
oriented data cleaning strategy is implemented.

B. Three Other SVM Modeling Algorithms

In this research, we investigate three other “rebalance”
techniques on SVM modeling for an exhaustive comparison
study.

1) SVM-WEIGHT: SVM-WEIGHT implements cost-
sensitive learning for SVM modeling. The basic idea is
to assign a larger penalty value to FNs than FPs [27],
[28], [6]. Although the idea is straightforward and has
been implemented in LIBSVM [26], there is no systematic
experimental report yet to evaluate the performance of this
idea on highly imbalanced classification. Without loss of
generality, the cost for a FP is always 1. The cost for a FN
is usually suggested to be the ratio of negative samples over
positive samples. However, our experiments show that it is
not always optimal. And hence we add one parameter Rw
into this algorithm. If there are Np positive samples and Nn
negative samples, the FN cost should be Nn/(Rw * Np).
The optimal value of Rw is decided by grid search.

2) SVM-SMOTE: SVM-SMOTE adopts the SMOTE algo-
rithm [21] to generate more pseudo positive samples and then
builds an SVM on the oversampling dataset [6]. SVM-SMOTE
also introduces one parameter Ro. If there are Np positive
samples, we should add Ro = Np pseudo positive samples
into the original training dataset. The optimal value of Ro is
decided by grid search.

3) SVM-RANDU: SVM-RANDU randomly selects a few
of negative samples and then builds an SVM on the under-
sampling dataset [6]. Random undersampling were studied in
[13], [1]. SVM-RANDU has an unknown parameter Ru. If
there are Np positive samples, we should randomly select
Ru x Np negative samples from the original training dataset.
The optimal value of Ru is decided by grid search.

C. Time Complexity

On highly imbalanced data, an SVM typically needs
O((Np+Nn)?) time for training in the worst case [5]. SVM-
RANDU takes O((Np + Np x Ru)?), which is faster than
SVM because typically Np * Ru << Nn. SVM-SMOTE
takes O((Np * (Ro + 1) + Nn)3), which is slower than
SVM because it increases the size of the training dataset.
SVM-WEIGHT seems to take the same O((Np+ Nn)?) time
as SVM. However, overweighting typically makes it harder
for SVM learning to converge and hence it usually takes
a longer time than SVM without overweighting. GSVM-RU
takes O(Gr*(Np-+Nn)?) because we need to model an SVM
for each granule extraction. However, the later modeling steps
are faster since the previous negative SVs (which are “hard”
samples for classification) have been removed.
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At the prediction phase, if an SVM has Ns SVs and there
are Nu unknown samples for prediction, it takes O(Ns* Nu)
time for prediction. Our experiments demonstrate that GSVM-
RU and SVM-RANDU extracts significantly less SVs and
hence are more efficient.

IV. EMPIRICAL STUDIES

The experiments are conducted on a machine with a
centrino-1.6MHz CPU and 1024M memory. The software is
based on the OSU SVM Classifier Matlab Toolbox, which
is available at http://sourceforge.net/projects/svm/ and imple-
ments a Matlab interface to LIBSVM [26].

A. Data Sets

Seven datasets, collected from related works, are used in
our empirical studies. As shown in Table II, all of them are
highly imbalanced as less than 10% samples are positive.
There are also significant variations of the data size (from
several hundreds to over ten thousands) and the number of
features (from 6 to 49).

For each dataset, the performance is evaluated with four
metrics: G-Mean, AUC-ROC, F-Measure, and AUC-PR.

The classification performance is estimated with different
training/testing heuristics. For 5 of the 7 datasets, 10-fold
Cross Validation is used. For Abalone (19 vs. other) and Yeast
(ME2 vs. other) datasets, it is estimated by averaging on 7
times random partition with the training/testing ratio 6:1 or
7:3. Basically, if a training/testing heuristic was used for a
dataset in previous works, we also use it for comparison.

For each fold or each training/testing process, firstly the
data is normalized so that each input feature has 0 mean and
1 standard deviation on the training dataset; then classification
algorithms are executed on the normalized training dataset and
the model parameters are optimized by grid search.

The modeling process is carried out separately for each
of the four metrics. SVM-SMOTE and SVM-RANDU are
executed 10 times and the average performance=tstandard
deviation is reported. SVM-WEIGHT and GSVM-RU are
executed only once because they are stable in the sense that
the performance is never modified among multiple runs if
parameters are fixed.

In the following, only high level comparisons between
GSVM-RU and other approaches are reported. Readers
can access detailed comparison results on each dataset
at http://tinman.cs.gsu.edu/~cscyntx/gsvm-ru/imbalance-
result.pdf.

B. How GSVM-RU improves classification

With limited space, the mammography dataset is used as
one example to show how GSVM-RU works to improve
classification. We obtain similar performance gains on other
datasets.

With G-Mean for evaluation, the best validation perfor-
mance is observed when the “discard” aggregation operation
is adopted and the 4th granule is used as the final aggregation
dataset. (i.e., The first three granules are discarded). The result

The G-Mean value of GSVM-RU-discard on mammography data at different granules
0.9 T T T T T
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Fig. 7. G-Mean values of GSVM-RU modeling with “discard” operation on
mammography data.

The F-Measure value of GSVM-RU-combine on mammography data at different granules

F-Measure value

Fig. 8. F-Measure values of GSVM-RU modeling with “combine” operation
on mammography data.

indicates that the first assumption (the decision boundary is
pushed toward the minority class) is reasonable here. When
the NLSVs in the old granules are discarded, the decision
boundary gradually goes back to the “ideal” one and thus
classification performance is improved (Fig. 7). After the
5th granule is extracted, too many informative samples are
discarded so that classification performance is deteriorated.
And hence the repetitive undersampling process is stopped.
With F-Measure for evaluation, the best validation perfor-
mance is observed when the “combine” aggregation operation
is adopted and the first 11 granules are combined to form
the final aggregation dataset. The result indicates that the
second assumption (a part but not all of informative samples
can be extracted in one granule) is reasonable in this case.
When more and more informative samples are combined into
the aggregated dataset, information loss is less and less so
that more accurate classification can be obtrained (Fig. 8).
However, when the 12th granule is extracted and combined
into the aggregation dataset, the validation performance can
not be further improved. The reason is that the new extracted
samples are too far from the “ideal” boundary so that they
are prone to be redundant or irrelevant other than informative.
And hence the repetitive undersampling process is stopped.

C. GSVM-RU vs. Previous Best Approaches

25 groups of experiments are conducted with 25 different
dataset/metric combinations (Table III). Of them 18 groups are
available for effectiveness comparison with previous studies.
For 12 groups, GSVM-RU outperforms the previous best
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TABLE II
CHARACTERISTICS OF DATASETS

Dataset # of Samples  # of Positive samples (%)  # of Features  Validation Method
Oil 937 41 (4.38%) 49 10-fold CV
Mammography 11183 260 (2.32%) 6 10-fold CV
Satimage 6435 626 (9.73%) 36 10-fold CV
Abalone (19 vs. other) 4177 32 (0.77%) 8  6:1 or 7:3 partition
Abalone (9 vs. 18) 731 42 (5.75%) 8 10-fold CV
Yeast (ME2 vs. other) 1484 51 (3.44%) 8 6:1 partition
Yeast (CYT vs. POX) 483 20 (4.14%) 8 10-fold CV

TABLE IV
AVERAGE PERFORMANCE OF PREVIOUS BEST APPROACHES AND
GSVM-RU ON 18 EXPERIMENTS

previous best GSVM-RU
G-Mean/8 79.7 85.2
AUC-ROC/5  90.2 924
F-Measure/5  59.9 66.5

approach. For 6 other groups, the performance of GSVM-RU
is very close to the previous best result.

Table IV reports the average performance on G-Mean, AUC-
ROC and F-Measure metrics on the 18 groups of experiments.
GSVM-RU demonstrates better average performance than pre-
vious best approaches on all three metrics.

Figures 9(a)-10(b) visualize comparison results on the
four metrics, respectively. In each figure, performance of
the previous best approach, SVM-WEIGHT, SVM-SMOTE,
SVM-RANDU and GSVM-RU is reported for each available
dataset. The value on the horizontal axis is formatted as data-
name(previous-best-approach-name). If there is no previous
result, only data-name is reported. It can be clearly seen that
GSVM-RU and the other 3 SVM modeling algorithms are
able to surpass or match the previously known best algorithms
on each of the 18 dataset/metric combinations. That is, we
effectively compare these SVM modeling techniques against
the best known approaches under the same experimental
conditions. Notice that in Fig. 9(a), the G-mean value of SVM-
SMOTE is O for the abalone dataset (19 vs. other) with both
7 times 6:1 splitting or 7 times 7:3 splitting. Also notice that
there are no “previous best” results in Fig. 10(b) because no
previous research has conducted an AUC-PR analysis on these
datasets.

D. GSVM-RU vs. Other 3 SVM Modeling Algorithms

Table V reports the average performance of four SVM
modeling algorithms over the 25 groups of experiments.
SVM-WEIGHT demonstrates almost the same effectiveness
as GSVM-RU with all four metrics. However, GSVM-RU
extracts only 181 SVs, which means that GSVM-RU is more
than 4 times faster than SVM-WEIGHT (with 794 SVs) for
classification.

SVM-SMOTE demonstrates similar effectiveness on AUC-
ROC, F-Measure and AUC-PR to GSVM-RU. However, it is
worse on G-Mean. The reason is that it achieves 0 G-Mean
value on the extremely imbalanced abalone (19 vs. other)
dataset. SVM-SMOTE is also much slower with 655 SVs for

classification. Moreover, SVM-SMOTE is unstable because of
the randomness of the oversampling process.

SVM-RANDU is slightly faster than GSVM-RU for predic-
tion by extracting only 143 SVs. However, SVM-RANDU is
slightly less effective than GSVM-RU with all four metrics.
Moreover, SVM-RANDU is unstable because of the random-
ness of the undersampling process.

V. CONCLUSIONS

We implement and rigorously evaluate four SVM mod-
eling techniques, including one novel method of undersam-
pling SVs, for our work. We compare these four algorithms
with state-of-the-art approaches on seven highly imbalanced
datasets under four metrics (G-Mean, AUC-ROC, F-Measure,
and AUC-PR). The comparative approaches consist of the
best known technique on the corresponding datasets. As far
as we know, this is the first work to conduct an exhaustive
comparative study with all four metrics and the variations in
SVM modeling. And hence we expect that our work can be
helpful for future research works to do comparison study on
these benchmark highly imbalanced datasets.

Specifically, the Granular Support Vector Machines - Repet-
itive Undersampling algorithm implements a guided repetitive
undersampling strategy to “rebalance” the dataset at hand.
GSVM-RU is effective due to 1) extraction of informative
samples that are essential for classification and 2) elimination
of a large amount of redundant or even noisy samples. As
shown in Table III, GSVM-RU outperforms the previous best
approach in 12 groups of experiments, and performs very close
to the previous best approach in other 6 groups of experiments.

In most of cases, GSVM-RU achieves the optimal perfor-
mance with the “discard” operation. This demonstrates that the
“boundary push” assumption seems to be true for many highly
imbalanced datasets. Considering its efficiency, the “discard”
operation is also suggested as the first aggregation operation
to try for GSVM-RU modeling. However, the optimal per-
formance is observed with the “combine” operation on the
mammography dataset and the satimage dataset for F-Measure
and AUC-PR metrics. This suggests that the “information loss”
assumption may be more suitable for some highly imbalanced
datasets, especially with F-Measure and AUC-PR metrics.

We also systematically investigate the effect of overweight-
ing the minority class on SVM modeling. The idea, named
SVM-WEIGHT, seems to be naive at first glance and hence is
ignored by previous research works. However, our experiments
show that it is actually highly effective. Although SVM-
WEIGHT is not efficient compared to GSVM-RU since it
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TABLE III

EFFECTIVENESS OF CLASSIFICATION

dataset metric validation previous best GSVM-RU  best in this work

Oil G-Mean 10-fold CV  87.4 (WRF [29]) 84.9 (D) 84.9 (GSVM-RU)
Mam G-Mean 10-fold CV  86.7 (BRF [29]) 89.0 (D) 90.5 (SVM-RANDU)
Sat G-Mean 10-fold CV  88.1 (AdaCost [30]) 89.9 (D) 90.6 (SVM-WEIGHT)
A(9-18)  G-Mean 10-fold CV  74.1 (CSB2 [30]) 86.5 (D) 86.5 (GSVM-RU)
Y(C-P) G-Mean 10-fold CV  80.9 (AdaCost [30]) 79.8 (D) 79.9 (SVM-WEIGHT)
A(19) G-Mean 7 times 6:1  57.8 (KBA [7]) 81.1 (D) 81.5 (SVM-WEIGHT)
A(19) G-Mean 7 times 7:3  80.6 (DEC [6]) 81.9 (D) 84.5 (SVM-WEIGHT)
Y(ME2) G-Mean 7 times 6:1  82.2 (KBA [7]) 87.8 (D) 87.8 (GSVM-RU)

Oil AUC-ROC  10-fold CV  85.4 (SMOTE [21]) 93.8 (D) 94.2 (SVM-SMOTE)
Mam AUC-ROC  10-fold CV  93.3 (SMOTE [21]) 93.9 (D) 94.8 (SVM-RANDU)
Sat AUC-ROC  10-fold CV  89.8 (SMOTE [21]) 95.1 (D) 96.2 (SVM-WEIGHT)
A(9-18) AUC-ROC 10-fold CV  N/A 93.6 (D) 94.1 (SVM-SMOTE)
Y(C-P) AUC-ROC  10-fold CV  N/A 84.5 (D) 84.5 (GSVM-RU)
A(19) AUC-ROC 7 times 6:1  87.4 (KBA [7]) 86.2 (D) 86.6 (SVM-WEIGHT)
Y(ME2) AUC-ROC 7 times 6:1  95.2 (KBA [7]) 92.8 (D) 93.6 (SVM-RANDU)
Oil F-Measure ~ 10-fold CV  55.0 (DataBoost-IM [30])  64.1 (D) 66.7 (SVM-WEIGHT)
Mam F-Measure 10-fold CV  71.3 (WRF [29]) 70.2 (C) 70.2 (GSVM-RU)

Sat F-Measure  10-fold CV  70.2 (SMOTE-Boost [31])  69.1 (C) 69.7 (SVM-SMOTE)
A(9-18)  F-Measure  10-fold CV  45.0 (DataBoost-IM [30])  60.4 (D) 64.7 (SVM-SMOTE)
Y(C-P) F-Measure 10-fold CV  58.0 (DataBoost-IM [30]) 68.8 (D) 68.8 (ALL)

0il AUC-PR 10-fold CV N/A 58.8 (D) 61.1 (SVM-WEIGHT)
Mam AUC-PR 10-fold CV N/A 64.3 (C) 68.4 (SVM-SMOTE)
Sat AUC-PR 10-fold CV N/A 74.4 (C) 75.4 (SVM-SMOTE)
A(9-18)  AUC-PR 10-fold CV N/A 65.5 (D) 66.6 (SVM-WEIGHT)
Y(C-P) AUC-PR 10-fold CV. N/A 62.9 (D) 62.9 (GSVM-RU)
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AVERAGE PERFORMANCE OF FOUR SVM MODELING ALGORITHMS ON 25 EXPERIMENTS

SVM-WEIGHT SVM-SMOTE SVM-RANDU GSVM-RU
G-Mean/8 85.1 63.0 83.4 85.2
AUC-ROC/7 91.6 90.1 90.7 914
F-Measure/5 67.2 67.4 65.4 66.5
AUC-PR/5 66.5 66.4 64.2 65.2
Efficiency/25 (#SVs) 794 655 143 181
Stability YES NO NO YES
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extracts more SVs, it can be the first SVM modeling method
of choice if the available dataset is not very large.
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